of evaporation. (1) Rocks repose on their sides, and form the lateral crests of these vast chains; rocks of schist, porphyry, freestone, and talc, mingle in layers; then coarse marble, and other calcareous substances without shells, resting on the schistus, form the exterior crests, the lower divisions, the supporters of these chains, and are the last work by which this unknown liquid, this sea without inhabitants, seemed to congregate materials wherewith to form mollusca and zoophytes, which would soon deposite on these foundations immense masses of their shells or corals. We even see the first productions of these mollusca, of these zoophytes, showing themselves in small numbers, at intervals, amongst the latest layers of these primitive earths, or in that portion of the superfices of the globe which geologists have termed transition rocks. We meet here and there with layers of shells interposing between some granites more recent than others, amongst divers schists and amongst some later deposites of the coarse marble; life which sought to possess itself of this globe, seems in these early periods to have struggled against the inert nature which first predominated; it was a long time ere it entirely gained the mastery it contended for, and appropriated to itself the right of continuing and raising the solid coating of the earth.

Thus it is undeniable, that the masses which now form our highest mountains were originally in a state of liquefaction; for a long time they were

⁽¹⁾ The conjecture of M. le Marquis de Leplace, that the materials which constitute this globe were originally in an elastic form, and then in cooling assumed a liquid consistency, and finally became solid, is greatly strengthened by the late experiments of M. Mitcherlich, who composed and crystallized by the heat of intense furnaces many of the mineralogical species which enter into the composition of primitive mountains.