been a liquid mass; and, therefore, there is every probability that it was once liquid; and if so once, its interior is probably still so, because the period for cooling it, when once surrounded by a solid crust, must be incalculably long. That this solid crust has once been liquid from heat, is most obvious to all who carefully examine it. For the unstratified rocks have certainly once been melted, and most of the stratified series were derived from the unstratified. Again, the organic remains dug out from the deep-seated strata prove that, when they were alive, the surface, even in high latitudes, must have been subject to a tropical, or even an ultra-tropical heat; thus showing us that the temperature of the globe has gradually diminished, as we should expect from the theory of original igneous fluidity. And, finally, no other hypothesis but the gradual cooling of the earth's crust, and the powerful volcanic agency that must from time to time have torn and ridged up that crust, will account for the present fractured and overturned condition of the strata, and the elevation of our continent from the ocean's bed. But this supposition does most satisfactorily explain all these phenomena, and also those of earthquakes and volcanoes.

I must acknowledge, however, that all these arguments fail of convincing a few geologists of the doctrine of internal igneous fluidity, to the extent above described. But they all admit that the facts do prove the existence of vast oceans of melted matter beneath the earth's crust. Nor do even these geologists doubt but the globe contains within itself the agencies requisite for a universal conflagration. Mr. Lyell says that " there must exist below enormous masses of matter, intensely heated, and in many instances in a constant state of fusion." He says, also, "When we consider the combustible nature of the elements of the earth, so far as they are known to us, the facility with which their compounds may be decomposed and made to enter into new combinations, the quantity of heat which they evolve during those processes; when we recollect the expansive power of steam, and that water itself is composed of two gases, which, by their union, produce intense heat; when we call to mind the number of explosive and detonating compounds which have been already discovered, we may be allowed to share the astonishment of Pliny, That a single day should pass without a general conflagration. 'Excedit profecto omnia