order to point in n general way perpendicularly to the curvature of the periphery of the body, and become by degrees foreshortened, until they point directly at the eye from the bottom of the socket. In a profile view of the sockets (Fig, 23), the cells at the last-mentioned place $\left(n^{3}\right)$ trend in lines at right augles to the line of vision, and therefore direetly toward the omal area; whilst, now, the cells in the equatorial plane point directly at the eye.

The merging of this into the radial system at this point, we have already indicated; but the precise line of juncture of the two may be better and more clenly described now that the boumdiaies of the former have been distinetly traced. Where the oral plane strikes the imer fice ($F \% .21 \Lambda, n^{\prime}$) of the opposite peripheric band, the cells of the two systems in question trend so nearly in the same direction as to make it very difficult to distinguish them apart; and, in truth, it is only when seen from the horizontal end that the wall earre (μ^{2}) of the eells of the lateral system furmishes the means of eliminating them from those of the ralial system. This apparent confusion of the peripherie borders of the two systems obtains all along the median line of the peripherie band just mentioned to its termination, and then along the borders of the oral system $\left(m^{2}\right)$. The cells $\left(p^{3}\right)$ cross each other at wider and wider angles, mutil, hall-way between the oral and tentacular plames, they mutually traverse one mother at right angles, and then again their trend grows more and more nearly parallel, till they run in the same direction side by side at the tentacular plane. At the latter point the parallelism is more perfect, and extenls deeper into the botly than along the median line of the peripherie band; and, in a profile view of the sockets (j), that part of the radial system $\left(m^{2}\right)$ which passes from the tentacular apparatus to the vertieal chymiferous tubes $(r r)$, seems to be one and the same with the literal system (mis). which radiates from the base of these sockets. In passing to the several hamels (A, B, C, D, E, F, G, II, of the peripherie system, and to the chymiferons tules (l^{1} to $\left.l^{\circ}\right)$, the cells of the lateral system preserve the same curve, booth horizontally aul vertically, as along the hypothenusal face. Λs we have already remarkel, these cells trend very nearly parallel with these of the radial system, where they meet along the median line of the peripheric bamks which are in the oral plane, and, as we pass around the periphery toward the tentacular plame, we here also find the two, abutting against the several bands (A to II) with a like trend; but it is only at the periphery that this parallelism oltains, whilst towards the axis of the body the cells cross at all augles between the most aeute and a right augle, according to their position: thus those eells which ralliate to the peripherie interambulacral band (A and E) in the oral plame, cross the radial eells which proceed from about the corners (Fiy. 21 a'), from the outer thiris, and from the median third of the digestive cavity, severally at a very acute angle, at an angle of

