n ', the abactinal end of the interambulacral motor bands. n^{\prime}, the inner face of n.
$n^{\text {b }}$, the actinal end of the interambulacral motor bands.
n^{6}, the tentacular motor system.
p to $p^{\text {d }}$, the lateral cellulo-motor system ; p where the wings from two opposito sides meet; p^{1} those cells which pass from the tentacular sockets to n, N, l, P, and C and G; $\boldsymbol{p}^{\mathbf{2}}$ the profile of the inner fuce of the wings; f^{\prime} the superficial termination of this sjstem, nlong the borders of m^{\prime}. This system is shown only on one half of tho figure, in order to avoid contusion.
9, I^{\prime}, the four main trunks from which the eight radiating chymiferous tubes nrise. It should be notieed, that these tubes are not strictly in the same horizontal plane, since their respective position varies more or less in the different contractions of the body, and those on one side are successively higher than those of the opposite side in tho alternato contractions of the opposite halves of the body, which regulate the geueral circulation of the nutritive tluid.
r, r^{\prime}, the cocline tubes folloring the digestive cavity. They arise from the main horizontal tube, and extend to the margin of the mouth, following the mitule of the the surface of the digestive carity.
r, entrauce to r, r.
s, the cight epidermic narrow bands of fixed ciliate bodies which pass from the abactinal ends of the rows of locomotive flappers to the base of the eap over the pedunenlated globular eye δ.
t, t^{\prime}, the radial cellulomotor system around the axial funuel.
u, rows of locomotive tlappers.
v, vertical chymiferous tubes, which accoupany, on the inner surface, tho rows of locomotive combs.
r, the same as v in a contracted state.
re, basal line of the locomotive finppers.
w', the sub-ambulacral motor cells, probably continuous with those which constitute the llappers.
x, ganglions? These swellings are more or less evanescent, and appear rather to be swall bodies caught in tho symmetrically arranged folds of the chymiferous tubes.
$x^{2} x^{4}$, cells of the interambularral system on the borders of the sub-anbulacral system x^{3}.
y_{1} ganglion-like lodies, arising probably from tho accumulation of granules in the contracted state of the vertical ehymiferous tubes when the circulation has ceased.
a, clymiferous tuhes of the tentacular apparatus.
a^{\prime}, the opening through which the vertien chymiferous tubes of the tentacle open into the main horizontal clymmiferous tubes between their main forks.
$a^{\prime \prime} a^{\prime \prime \prime}$, the same ns a, one on cach side of the tentacular base.
β, elongated disk from which the tentacles arise.
β^{\prime}, margin or outer wall of β.
$\beta^{\prime \prime}$, outer wall in profile nt tho margin of γ.
$\beta^{\prime \prime \prime}$, outer wall nt tho thickest part of the disk.
r, the longitudinal furrow of the disk (in fig. 15), or the keel-like prolongation of the inner layer of the disk between the tentacular tubes, to which it is a wall.
r^{\prime}, the inner layer of the teutacular base.
$y^{\prime \prime}$, the apex of the disk.
$d_{\text {, eye-speck in the rentre of the circumseribed area. }}$
d, globular cavity coutnining the eye-speck δ.
c, the shallow, oblong furrow of the circumscribed area lined with vibratile cilin.
ε^{\prime}, raised line following the inner outline of ε, probably the annloguc of that row of fringes so couspicuous around the circumscribed aren in some other genera of Beroid Medusm, nud particularly distinet in the genus Idjin.
ε^{2}, another line, parallel to the former and within it, the specinl nature of which I have failed to nsectlain.
; the openings, cecline apertures, of the two bulbs of the vertical finnuel, through which the frecal matters are from time to time discharged.
0 , tho tubercle upon which tho eye-speck \& rests.
ι, κ, concuntric swellings connected with the ganglion of the eye-speck, stretehing in the direction of the longitudinal dinmeter of the circumseribet area.
λ, four ganglionic swellings within the inner of the swollen margins near the ganglion of the eye-speck, the nature of which I have also failed to determine.
Figs. 1-12. Lasso-cells from the fringes of the tentacles. Fig. 1 is magnified 500 diuncters, tho others 200 di ameters, by means of Spencer's one fourth inch objective and Tolles's solid ocular, number E. In all thess figures a is the wall of the cell, b the lasso, c the base or point of attaclument of b, d the free end of b, c tho mouth of the cell, f tho granular covering of a.
Fig. 1. A closed lasso-cell ns seen with 500 diameters. Fig. 2. The snme ns fig. 1, magnified as above, with the granular coatiug iu profile.
Fig. 3. An open cell, partially contracted, and the lasso out.
Fig. 4. Still more contracted than fig. 3.
Fig. 5. The wall almost entirely decomposed.
Fig. G. The lasso forcing its way through tho closed mouth.
Fig. 7. Foreshortened view of fig. \mathbf{G}, the granular coating in profile.

