Fig. 8. Profilo viorv of a coll, liko fig. 3.
Fig. 0. The lasso partially thrust out, and the rest of tho throad distant from the wall, showing that no cell contraotion forces it out, but that it is protruded by its own act. Tho granular conting covers the whole cell.
Fig. 10. Similar to fig. 5 , in profile.
Fig. 11. Profilo viow; the thrend extruded, but not uncoiled.
Fig. 12. Showing the same as fig. 9 , but more of the thread is out.
Fig. 13. Tho tip of one of tho tentacular fringes. a the lasso-cells; b tho samo as a, in prolile; c outer wall; d innor wall; e transparent axis. 350 diuncters.
Fig. 14. Portions of tho clongate shallow linrows of the circumseribed area covered by vilratile cilin; the bull, and cap of tho eye-speck, the two bulbs of the axial funnel, and tho eight epidermic bands of cilinte boties prolonged from tho rows of natatory Inapers 25 diameters.
Fig. 15. Tho tentacular apparatus as seen from the periphory; to shov tho mode of the attachment of the tontaclo to tho disk, and the relation of the latter to the double chymiferous tubes; taken from a hall-grown individual. 80 dinneters. The better to understand tho relations of these parts, a profile view (lig. (C)

Fig. $\mathbf{C .}$

$a a^{\prime \prime}$ chymiferous tube. a^{\prime} ontrance to a.
c wall of the maln horizontal chymiferous trunk.
e^{\prime} wall of tho opposite aide of e. g Tho base of the tentacle. j tentacular socket.
j aperture of j.
$j 3$ apex of j.
j proximal aldo of j.
κ tho tentacle.
q point of Junction of c and a^{\prime}.
$\beta^{\prime \prime}$ outer wall of the disk. $\beta^{\prime \prime \prime}$ samo as $3^{\prime \prime \prime}$.
γ tho inner layer of tho disk.
γ ' inner Inyer of the dak at tho baso of tho tontacle.
$\gamma^{\prime \prime}$ the thin proximal wall of a.
$\gamma^{\prime \prime \prime \prime}$ the samo as $\gamma^{\prime \prime}$.
$\gamma^{\prime \prime \prime \prime}$ tho thlekest part of the samo layor.
A.full account of tho structure of this apparatus may bo found on pago 225.
of the same apparatus is here introduced, with the samo lettaring as fig. 15 of Pl . II^{a}.

Fig. 16. Δ fer lasso-colls from fig. 17. 500 diameters.
Fig. 17. One of the tentacular fringes, showiug the lassocells to bo arranged sido by side in an uninterrupted layer a b; here and there the threads are out. 350 diamoters.
Fig. 18. Transversely sectioual viev of a contracted tentacular fringe. b the layer of lasso-cells; $c c^{\prime}$ the outer wall; $\|^{\prime \prime}$ the inuer wall; e the transparent axis. 350 diaus.
Fig. 10. The eye and its cap; the bulb underlying the eye; the eight rows of immovable cilin; and the oblong shallow furrow, more highly magnified than in lig. 14. 50 dinuncters.
Figs. $20,21,20$, and 23 represent the same aninal in four different views, so that, after a careful study, its form might bo carved from them.
Fig. 20. $\$ fill-grown indivilual, seen from the abactiunt eut, to show the organs in their relative position; the eye and the shallow oblong furrow of the circumscribed area are nearest the olserver; tho tentacular apluatus comes next, and the two great main chymiferous trunks are about the mildle of the boty. I diameters.
Fig. 21. Same as fiy. 20 ; seen from the netinal end, to show principally the relation of the cellulo-motor systems to the organs; the mouth is nearest the eye, then come the tentacular sockets, and lastly the two great chymiferous trunks.
Fig. 22. Profile view, in which one of the tentacles is next the observer, the digestive cavity (l) presents its brond side to the cye, and tho bulbs ($f^{1} f^{\prime 2}$) of the axial funnel stand right aud left.
Fig. 23. Viow at right angles to fig. 22. The tentacles stand right and left, ns do also the two ehymiliorous tubes ($r r^{1}$) which embrace the digestive eavity; the latter (b) presenting its edge to the cye.
Fig. 2.1. The enormons eclls of tho cellulo-motor systems. These are from the radial system. a the wall; b same as a, but contracted and wriukled; c the wavy face of $b ; d$ tramsparent cavity of tho cell; c the slender points of tho cells. 500 diaueters.
Fig. 25. An individunl, natural size, swimming with its tentacles trailing behind, and the fringes eursed, waved, bent at various sharp angles, and stretehed to the utwost or closely retracted. For other riews, seo my paper in Mem. Amer. Acad. Vol. IV. II. I.
Fig. 26. One of the natatory paddles and the subjacent cells of the cellulo-motor systems, to show the relation of the colls of tho paddles to those of tho motor system. 50 diameters.

