http://www.geology.19thcenturyscience.org/books/1857-Agassiz-NatHist/README.htm

Fig. 2. A soyphostomarliko process (c^{3}) budding from tha baso of an old soyphostoma. 20 diameters.
Fig. 3. Thoo scyphostomas arising from a common basis. 20 diamotare
Fig. 4 An ald scyphostomn, vith large offshoots.
Fig. 5. Similar to fig. 4, with one rigid-looking alfshoot.
Fig. 6. A sogphostoma bearing an offshoot with a globular tip.
Fig. 7. A longitudinally ridged scyphostoma with a distorted offshoot.
Fig. 8. Hero the offshoot is forked ($\left.c^{9} c^{d}\right)$.
Fig. 9. Tho offshoots are remarkably long and tentacular.
Fig. 10. A strobila just making its first constriction.
Fig. 11. A strobila with two constrictions.
Fig: 12. Δ daformed strobila.
Fig. 13. Two of the disks are well formed, but not maturo.
Figs. 14 and 16. A forashortened and a three-ruarters viour of the proboscis of fig. 19 . d apurture of the mouth; e tho sexual appenduges. 20 diameters.
Figs. 10 and 17. Various attitudes of tho proboscis of fig. 20. a tho crucinto aperture; a^{1} lip; d cavity of the proboscis; e soxual organs. 20 diameters.
Fig. 18. More highly magaified view of the proboscis of fig. 19. a cruciato fold of tho lips $a^{\prime} ; ~ l$ outlino of the proboscis, in the distance; c inner surface of the folds of the aperturo $d ; e$ sexual appendages. 60 diamoters.
Fig. 10. Lower sida of an ephyra, a short time after it became frec. The broad radinting canals d and - occupy as much space os tho intervals. 10 diams.

Eig. 20. Upper sido of fig. 10 when it is in a contracted state.
Fig. 21. Samo as figs 10 and 20 when the umbrella is roverted.
Fig. 28. Profile viev of an eplyyra, which has tho corners
(a^{1}) of the lips and the veil (i) very prominently doveloped; ${ }^{2}$ tho tentacular lobe. 10 diameters.
Fig. 29. Samo as fig. 20 in profile. 5 diameters.
Fig. 24. Another reverted form of fig. 10.
Fig. 25. Upper surface of an ophyra a little younger than fig. 22. The branching lines are dorsal folds in tho canaly. 10 diameters.
Eig. 20. Upper sido of an ephyra, which is a little 'younger than fig. 25. About 15 dinmeters.
Fig. 27. A threc-quarters dorsal view of fig. 10 in a roverted or diastolic state. 5 diameters.
Fig. 28. Rrofile, of fig. 19 in the diastole.
Fig. 29; Partion of tho cdgo of an ephyra, bearing
soveral tentacies and having an incipient lacunar brancling of tho canals.
Fig. 30. Same as fig. 25 , in a contracted stato.
Fig. 31. Oculiforous lobo of fig. 10, lower side. 20 dinmeters.
Fig. 32. Dorsal view of fig. 22 in a contracted state.
Fig. 33. Foreshortened view of fig. 31.
Fig. 34. Eje peduncle of lig. 31. LO dinmeters.
Fig. 35. Culls from tho upper surface of the lappet of the oculiferous lobe of fig. 25. Llasso-cells. 470 diams.

PLATE NT.

Efnyiba of Aurella flavidula.

[Drawn from nature by U. J. Clark.]
Figs. 1 and 2, from an eplyyra a little younger than that of fig. $19, \mathrm{Pl}$. XIa.
Fig. 1. Tho incipient sexual organ, seen from below, with two rows of digitnte appendages, the louger ones
(g) seen beyond the shorter. 100 diameters.

Fig. 2. The cdgo of the dise, seen from below, between two oculiferous lobes, bearing a single budding tentacle
(i^{2}) and a tongue-shaped veil. 100 diameters.
Fig. 3. Similar to fig. 2 but older, and belonging to fig. 4. The priacipal feature is the incipient folding of the tentacular lobules i^{2}. 100 diuneters.
Fig. 4. Inferior view, from centre to margin, including one of the oculiferous lobes and the two veils on each side, of an eplysa in which the radiating canals have begun to branch; a singlo tentacle has developed, and the reil is half as long as the oculiferous lobes. to diameters.
Fig. 5. Profile of an eplyyra with thirty-two tentacles at overy interval. Tho disk is contracted; the same ns Gig. 20. Natural size. Seo Pl. NIo. fig. 5.
Fig. 6. Shows the vibratilo cilia on the inner surface of the proboscis of 6ig. 5. 500 diameters.
Fig. 7. Tho eje and eje peduncle of fig. 4, seen from below, to show the relation of the layer of the lenticular bodies of the eye to tho valls. 500 diameters.
Fig. 8. Longitudinal sectional view of the eye of fig. 7, showing that the lenses are in the inner wall.
Fig. 9. Longitudinal section of fig. 3, to show the relations of tho walls of the upper and lower floors. 100 diameters.
Fig. 10. Tho sexual organ, with several rows of ligitate appondages, from figs. 17 and 18. Viaw from bclow. 100 diameters.

