Fig. 11. Ono of the crystalline lenses of fig. 7, seen from the fat or inner end, slowing its polyhedral outline and the brancling cavity. a the wall of the eell which belongs to tho outer wall of the pelluncle and overlies the cell which contains the lens; it is seen in the distance (seo a fig. 16); δ the fint side of the prism foreshortened, and as tho outer end is bronder than the iuner, the outline of the latter is coneentric to that of tho former; 0 the solid part of the leus, to compare with 0 in fig. 16 ; , to coumpare with, in fig. 10; μ the divertienli from the envity v, in the centre. 2,000 diamoters.
Fig. 12. Oue of the lappets of an oculifernus labe of fig. 4 , curred downwards, so as to give a sectional riew of its thickness, and to show the kecl. 100 dianneters.
Fig. 13. Transverse section of the siuple radinting enual ($c e^{2}$ Gg. 1i), and the two canals on ench sile which come from the forked canal (c, fig. 1i); $a .13$, groups of long-drawn-out cells, remmants of the ntencliment of the superposed walls. 100 dinmeters.
Fig. 14. End riur of tho so-called eye-speck h, fig. 7 . 500 diameters.
Fig. 15. Protile and sectional view of fig. i. 300 diameters.
Fig. 16. Shows the position of the crystalline lenses in the eells of the inuer wall of the ocular peduncle. a a superposed eell of the outer wall (sec fig. 11 a); β the wall of a where it rests on the outer end, s, of the underlying cell; γ the clear, homogeneous contents of $a ; \delta$ the outer end of the lens-bearing cell; ε the cavity of η in frout of the lens; $;$ the inner end or bottom of $\eta ; 0$ the side of the prism receding from the eye; t the sido of the prism nearest the eye; x the rounded anterior surface of the lens; λ the cylinulrical axial cavity of tho lens; μ the canals radiating from λ and following close to the that posterior face of the lens; v posterior opening of λ. 2,000 dinmeters.
Fig. 16e. Λ lasso-ell from fig. $7 . a$ the cell wall; l tho aperture of the cell and base of the thread; c the end of the thread; d point of junetion between the straight axial portion and the coils of the thread; e the first coil of the spiral; f the transversely spiral coils 2,000 diameters.
Fig. 17. A quarter part of the disk of fig. 18, seen from below. There are fourteen teutacles. The branching radiating canals are nearly or allogether six pronged, and tho edge of the disk occupics two thirds of the circumference. 40 dinmeters. Next the
oculiferous lobe on the right, the reil and the tentacles are curved downwarils and inwards.
Fig. 18. An ephyra, secu from below. Natural size.
Fig. 10. One of the marginal fringes of fig. 6, Pl. XIe. a the end, where the wall is thickoned and contains numerous lnsso-cells; b group of lasso-cells; c the saune as l in profic. 200 diameters.
Fig. 20. Profile of nu eplyra, with the disk expanded, the same ns fig. $\boldsymbol{\delta}$. Natural size. (Sce $\mathrm{Pl} . \mathrm{XI}$ o. gig. 5.)
Fig. 21. One of the digitate borlies of fig. $18 \mathrm{c}, \mathrm{PI}$. Xla. a the single wall studted with lasso-cells; ρ the inner wall of the lower floor from which a arises; γ the entrance to a. 300 diameters.

lLATE XIe.

Aunblah flavidula (emitra) and Conme: millabilis.

[Drawn from nature by II. J. Clark.]
For the general lettering, see description of PI. XI.
Fig. 1. A tentacle from tho edgo of the disk of fig.
9. $\quad a a^{1} a^{2}$ the outer wall, seen in a sectional vien
(a) near the end of the tentacle, in a surface vien (a^{\prime}), and ngain in section where it is very thick (a^{9}) and contains n group of lasso-cells, and finally where it is streteleed so ns to be very thin $\left(a^{2}\right) ; b$ the inner wall uear the enul of the tentacle; b^{\prime} seen through a^{1}, in a sectional view (b^{2}) underneath a group of lasso-ells, and extremely extended (l) liko $a^{\text { }} ; c$ the end of the tentacle in section, crowded with lassocells; c^{1} a group of lasso-cells in section; $d d$ the channel extending from base to tip directly from the circular canal; c groups of lasso-cells. 500 diameters.
Fig. 2. Vievr from above of the cyo and the immediately surrounding parts of the disk, from an ephyra an inch and a hadf in diameter aud having finy tentarles; priucipally to show the prolougation of the elhymifierous tubo into tho lappets of the oculiferous lobe, and the mode of formation and broadening of the radiating eamals. 40 diameters.
Fig. 3. View from above of a portion of the tentaculate margin and the veil, from fig. 18, Pl. Xr. Beside the general lettering we have a the outer and ρ the inner wall of $\boldsymbol{r}^{i} ; \gamma$ the outer wall of i^{1} where it pusses iuto the outer wall (c) of \boldsymbol{r}^{7}; δ the inuer wall of i where it passes into the iuner wall of $i ; c$ the outer wall of $i ; \zeta$ the inner wall of i seen in the distance; η tho inner wall of i nearer to the eye

