a full account of them here. ${ }^{1}$ The head of this Hydroid is capable of assuming $\boldsymbol{\beta}$. great variety of shapes; but most frequently, especially when the animal is in its native haunts, it assumes an extremely extendel condition. with its crown of tentacles, the proboscis and buccal tentacles, and the bunches of medusoids stretched to the utmost (PI. XXIII. Fig. 1 ${ }^{\text {b }}$). The buccal tentacles. when fully extended (Pl. XXIII. Fig. $1^{b}, t$), are as long as the prohoseis (μ) from the base to the mouth, and very slender nud tapering; yet they may at another time be so contracted as to resemble were protuberances, hardly, if at all, longer than broad (PI. XXII. Fiys. 19) and $23, A^{2}$). Between these two extremes there are all grates of length and breadth, as may be seen by referting to our figures. The lower circle of tentacles presents as great a variety of attitules as the upper one. When the tide flows rapidly, they are usually stretehed out in the direetion of the eurrent, and seem to undulate with every passing ripple; in still water, however, they are more active, and more apparently under the control of the amimal. At one time they are thrown upwards, with a sulden sweep, as if to embrace an intrusive amimal (PI. XXII. Fiy. 20, 1), and quickly contracted. amb then concentrated about the mouth, along with the buccal tentacles (f) . On such occesions they very frequently become globular at the tips. so that they might readily be supposed to retain this shape normally. ${ }^{3}$ At the next moment, perhaps. the captured ereature, proving to be unpalatable, is rejected with as much realiness as it was seized, bey throwing back the crown of tentacles (Fi/s. 2π and $2 s, 1$) amb disclosing the interior of the stomach (a^{4}), with a sudden and sometimes often repeated graping. Sometimes the contractions of the proboscis (Fi, $2\left(\mathrm{i}, \boldsymbol{r}^{1}\right.$) are so vigorous, and the buecal tentacles $\left(f^{2}\right)$ are laid together so evenly and compactly, that the whole is reduced to the smallest possible space. with nothing to indieate the presence of the tartile organs, but the longitudinal ridges, whieh extenl nearly down to the disk. Again, the larger tentacles, retaining their taper points. simply shorten and thicken transversely (Fij, 20, t), and, turned either inwarls or outwards (Fig. 10, t), retain a fixed position, while the proboscis swells up into a globular shape (Fi!, 20, "). and at times constricts into two more or less distinetly-defined portions (F\% \% 19, $a b)$. In this last phase the hydroid appears to be in a highly irritated state,

[^0]the animal was in an upright position, in order to allow the bunches of medusoids to lall back from the proloscis.
${ }^{3}$ If thrown into alcolol in this condition, they would very maturally be deseribed as eluhbshaped, if they were studied from preserved specimens alone, ats may happen in case of specimens brought home from distant expeditions.

[^0]: ${ }^{2}$ The two species of Thamnoenidia, Th. spectabilis and tenella are identical in every respeet, excepting size and the mode of branching, the latter species being considerably smaller than the former, and branching very openly and loosely, and therefore the illustrations of one will be used reciprocally for the other.
 ${ }^{2}$ The figure here referred to was drawn while

