become separated (Fig. 16, $a^{1} p$), the inner one retaining the form of a cone (p), and the hemispherical cavity (ca) thus left is filled by Ω homogeneous, transparent, faint yellow mass. The conical proboscis (p) extends through the whole depth of the cavity ($c a$), aud within is occupied by a prolongation from the chymiferous cavity, which is thickly lined by reddish-brown granules and cells (c). The pedicel (a b) is a little longer than the medusa, and is pervaded by a broad chymiferous envity, expanding into a still hroader chamber (c), the digestive cavity proper of the medusa. Gradually the medusa, at the same time that it increases in size, becomes globular (Fig. 17, A), and the disk cavity (cu) assumes the form of a spherical chamber, through which the eylindrieal proboseis (p) projects, from base to apex. The spermatie contents of the disk eavity (ea), which occupy the whole space about the proboseis, become denser, and more decidedly yellow. Here and there lasso-cells (l) are seattered through the outer wall, and seem to be fully developed; but we have not made any special investigation of their structure. The pedieellar portion (" 16 c) is about one half longer than the medusa, and the chymiferous cavity (c) has become very irregular in its outlines, on account of the highly inereased derelopment of the reddish-brown gramules and cells, which line it as well as the proboseis (p). The two walls, the outer (1) and the inner (b), have the same thickness throughout, not only in the pedicel, but in the medusn, where the inner one forms the prohoscis (p) and the outer one the disk (A). In the next stage (Fiy, 18) we find that the pedicellar portion hats nearly doubled its length, and that a second medusa (B) has begun to develop immediately below the first one (A), simply by a bulging and separation of the outer wall from the inuer one ($\mathrm{B}, \mathrm{r}^{2}$). This secoud medusa is separated from the primary one by a very short neck (a), no longer than the combined thickness of the outer and inner walls ($c^{1} c$), which, at this point, are closely in contact with each other, the inner one (c^{1}) forming a partition, as it were. between the disk eavities (A cu, B ca) of the two medusae. The primary medusa (A) has the form of a Hattened sphere, of which the proboseis (p) forms the axis, and its spermatic contents (eut) are much denser than in the last phase, and of a dusky yellow color: The spermatie mass of the secoml medusa (B) is yellowish, like that in the last phase, and oceupies a little less than two thirds of the transverse diameter of the disk, the axial portion (p). or, homologically, the proboseis, filling more than one third of the space. The terminal (c^{\prime}) and basal ents of this proboscidal axis, are expanded, so as to extend a short distance along the internal surface of the outer wall. lmmediately below the secondary medusa (B) the pedieel (C) is slightly swollen, aml in the act of forming a third medusa, as seen in Fig. 19, in which we have actually a third medusa (C) added to the group, and formed in the same way as the second, but as yet less advanced than the secondary medusa

