in other instances, the projections are but slightly developed (Fig. 9). The greatest onre is necessary in making such sections, in order not to break these partitions, inasmuch as they are mostly very thin, oftentimes filmy, and brittle. A section made by simply breaking the branch aeross, holding it very steadily in the fingers, is much better than Ω cut by the section whel. At the tips of the branches the cells can hardly be recognized as such, but appear more like integular depressions of greater or less depth ($F i j, 12, b$ def). Between these the corallum is very loose and spongy, each cell communicating with the others through large, irregular clamnels, penetrating even to the centre (Fiy. 1シ. ") of the branch. In the specimen which we have figured (Fi!. 12), the intercommmicating chamels are less numerous than in many eases; for instance, a specimen now before me is so thickly channelled, that the solid, calcareous deposit oceupies much less room than the open spaces. Passing down the branch, for hall an inch, we come to n point where the cells have a definite outline (Fiif. 10) and the bottom (b) of the cavity is clearly circumseribed. Sbout the mouth (1), or entrance, and between it and that of the adjoining cells, the comallum is traversed by tortuous cavities ($i j$), some like chamels (i), and others like laem:e (i), all of which commmicate freely with the cavity of the cell. Around the base (i) of the cell the corallum (k) is more solid, and the intercommunicating chamels (k) are smaller and fewer; but around, and at the centre of the branch, we find, again, a spongiform structure, such as we have figured from a section lower down the branch (Fi!. 11. "). Nor is this absent at any age, even in the oldest part of the corallum; at least we have found it at the centre of stems, from an inch to an inch and a halt in diameter. Sometimes, such is the irregularity in the rate of development of the branch, that we find the cells quite deep at the distance of hall an inch from the tip, and transversely divided into three or four superposed chambers (li\%, !). The transverse partitions (c) which lie between these chambers are as thin and firagile as the false partitions, but they are more regular, and seldom, il ever, perforated. The same may be said for the oldest and deepest vells (Fi\%, 1:3). In fact there is very little change in the structure of the cell alter it has aepuired three or four tramsverse partitions; there are the same tortuous ehamels, both about the youngest (Fig. 10, $h i$), the more advanced ($F i j, s, 0, j^{\prime} h$, and 11), and the ollest (Fiy. 13); and beyond that, the corallum is, as we have described it in Fig. 10, h, nearly solid, with only here and there a narrow chamel, until we approach the axis of the stem, where we always find a spongitorm mass (Fi\%. 11, a). The form of the cell, at all ages, is eylindrical (figs. !, 11, and 13), and the transverse partitions are nearly uniformly arranged, at equal distanees, one above the other, and at such heights, that ench included chamber is from one quarter to one third brouder than deep. The direction in which the eells trend is, more or less, along

