is manifested during the twenty-five days immediately preceding and succeeding the comet's perihelion passage. The value of the constant is therefore somewhat different, because in the neighborhood of the sun the highly attenuated but still gravitating strata of the resisting fluid are denser. Olbers maintained* that this fluid could not be at rest, but must rotate directly round the sun, and therefore the resistance offered to retrograde comets, like Halley's, must differ wholly from that opposed to those comets having a direct course, like Encke's. The perturbations of comets having long periods of revolution, and the difference of their magnitudes and sizes, complicate the results, and render it difficult to determine what is ascribable to individual forces.

The gaseous matter constituting the belt of the zodiacal light may, as Sir John Herschel[†] expresses it, be merely the denser portion of this comet-resisting medium. Although it may be shown that all nebulæ are crowded stellar masses, indistinctly visible, it is certain that innumerable comets fill the regions of space with matter through the evaporation of their tails, some of which have a length of 56,000,000 of miles. Arago has ingeniously shown, on optical grounds,[‡] that the variable stars which always exhibit white light without any change of color in their periodical phases, might afford a means of determining the superior limit of the density to be assumed for cosmical ether, if we suppose it to be equal to gaseous terrestrial fluids in its power of refraction.

The question of the existence of an ethereal fluid filling the regions of space is closely connected with one warmly agitated by Wollaston,§ in reference to the definite limit of the atmosphere—a limit which must necessarily exist at the elevation where the specific elasticity of the air is equipoised by the force of gravity. Faraday's ingenious experiments on

* Olbers, in Schum., Astr. Nachr., No. 268, s. 58.

† Outlines of Astronomy, § 556, 597.

 \ddagger "En assimilant la matière très rare qui remplit les espaces célestes quant à ses propriétés réfringentes aux gas terrestres, la densité de cette matière ne saurait dépasser une certaine limite dont les observations des étoiles changeantes, p. e. celles d'Algol ou de β de Persée, peuvent assigner la valeur."—Arago, in the Annuaire pour 1842, p. 336-345. "On com paring the extremely rare matter occupying the regions of space with terrestrial gases, in respect to its refractive properties, we shall find that the density of this matter can not exceed a definite limit, whose value may be obtained from observations of variable stars, as, for instance, Algol or β Persei."

§ See Wollaston, Philos. Transact. for 1822, p. 89; Sir John Herschel, op. cit., § 34, 36.