In the above list I have not included the shells of the glacial beds of the Clyde and of several other British deposits of newer origin than the Norwich Crag, in which nearly all—perhaps all—the species are recent. The land and freshwater shells, thirty-two in number, have also been purposely omitted, as well as three species of London Clay shells, suspected by Mr. Wood himself to be spurious.

By far the greater number of the living marine species included in these tables are still inhabitants of the British seas; but even these differ considerably in their relative abundance, some of the commonest of the Crag shells being now extremely scarce; as, for example, Buccinum Dalei; and others, rarely met with in a fossil state, being now very common, as Murex erinaceus and Cardium echinatum.

The last table throws light on a marked alteration in the climate of the three successive periods. It will be seen that in the Coralline Crag there are twenty-seven southern shells, including twenty-six Mediterranean, and one West Indian species (Erato Maugeriæ). Of these only thirteen occur in the Red Crag, associated with three new southern species, while the whole of them disappear from the Norwich beds. On the other hand, the Coralline Crag contains only two shells closely related to arctic forms of the genera Admete and Limopsis. The Red Crag contains, as stated in the table, eight northern species, all of which recur in the Norwich Crag, with the addition of four others, also inhabitants of the arctic regions; so that there is good evidence of a continual refrigeration of climate during the pliocene period in Britain. The presence of these northern shells cannot be explained away by supposing that they were inhabitants of the deep parts of the sea; for some of them, such as Tellina calcarea and Astarte borealis, occur plentifully, and sometimes with the valves united by their ligament, in company with other littoral shells, such as Mya arenaria and Littorina rudis, and evidently