pressed numerically by such a multiple of this integral, so taken, as to give I for its value when r is infinite: which gives

$$
H I=1-E\left(-k r^{2}\right) ; \text { and therefore } M=E\left(-k r^{2}\right) .
$$

Now, when $r=a$, the radius of that circle within which just half the total number of arrows strike ; the probabilities of hitting and missing that circle are equal : so that H and M are in that case each $=\frac{1}{2} . \quad$ We have, consequently,

$$
E\left(-k a^{2}\right)=\frac{1}{2}
$$

and eliminating \bar{l}, we obtain

$$
\log . M=\frac{r^{2}}{a^{2}}, \log \cdot\left(\frac{1}{2}\right) ;
$$

or,

$$
M=\left(\frac{1}{2}\right)^{\frac{r^{2}}{a^{2}}}
$$

Collingwood, fune 8, 886.

NOTANDUM.

The experiment suggested in $\S 9$ of Lecture XIII. has been made by Herr G. Quincke, with complete success. A full account of it will be found in Poggendorff's Annalen, vol. cxxviii. pp. r77, et saq.

