matter. We proceed to furnish the reader with some accurate analyses of its composition.

The first is an analysis made by M. Figuier, of water obtained at Havre, a few leagues out at sea. For one gallon of water it gave the following result:—

									PARTS.
Chloride of sodium,	•••	•••		•••		•••	***	***	25,704
Chloride of magnesia	,	•••	•••		***	•••	•••		2,905
Sulphate of magnosia	١,	•••	•••		***			•••	2,462
Sulphate of lime,	•••	•••	•••	•••	•••	•••	•••		1,210
Sulphate of potassa,	•••	•••	•••	•••	•••		•••	•••	0,094
Carbonate of lime,	•••	•••	•••	•••	•••			•••	0,132
Silicate of soda,	•••	•••	•••		•••		•••	•••	0,017
Bromide of sodium,	•••	•••	•••				•••		0,103
Bromide of magnesiv	ım,		•••	•••			•••		0,030
Oxide of iron, carbon oxide of mang			-	spha	te of	mag	nesia	1, }	traces
		-, -	,				•••		
									32,657

The water of the Mediterranean is more charged with salts than that of the ocean. The subjoined analysis was made by M. Usiglio, a chemist engaged in the superintendence of the salterns of the south of France:—

							PARTS.
Chloride of sodium,		•••	•••	•••	 •••	***	29,524
Chloride of potassium,				•••	 		0,405
Chloride of magnesium,					 •••		3,219
Sulphate of magnesia,			•••		 	•••	2,477
Chloride of calcium,					 		6,080
Sulphate of lime,	•••				 	•••	1,557
Carbonate of lime,					 •••		0,114
Bromide of sodium,					 		0,356
Peroxide of iron,			•••	•••	 •••	•••	0,003
							43,735

We may conclude, from the quantity of marine salt contained in a gallon of sea water, that the mass existing in the entire ocean would form, if spread over the globe, a stratum upwards of thirty-two feet in thickness.

[Many new facts in reference to the composition of sea water have been collected by Professor Forchhammer * of Copenhagen. We shall summarise the more important as briefly as possible.

^{* [}Forchhammer, in "Transactions of British Association," year 1844.]