by a wise distribution of these different functions of sight between the two eyes. Here then again the function, that is the activity, of originally equally formed organs can become divergent by habit; however, the function reacts again upon the form of the organ, and upon the internal structure.

Divergent adaptation can very easily be perceived among plants, especially in creepers. Branches of one and the same creeping plant, which originally were formed alike, acquire a completely different form and extent, a completely different degree of curvature and diameter of spiral winding, according as they twine themselves round a thinner or a thicker bar. The divergent change of form of parts originally identical in form—which tending in different directions develop themselves under different external conditions—can be distinctly demonstrated in many other examples. As this divergent adaptation interacts with progressive inheritance, it becomes the cause of a division of labour among the different organs.

An eighth and last law of adaptation we may call the law of unlimited or infinite adaptation. By it we simply mean to express that we know of no limit to the variation of organic forms occasioned by the external conditions of existence. We can assert of no single part of an organism, that it is no longer variable, or that if it were subjected to new external conditions it would not be changed by them. It has never yet been proved by experience that there is a limit to variation. If, for example, an organ degenerates from non-use, this degeneration ends finally in a complete disappearance of the organ, as is the case with the eyes of many animals. On the other hand, we are able, by continual

270