tissue," in contrast to the primary tissue of the epithelium out of which they arose.

The whole of this important process, the so-called differentiation of the tissues, is in reality nothing but a *divergence of the cells*, which constitute the tissues. Its physiological nature is determined by the division of labour of the cells; its morphological result is the divergence of form in the cells, or the unequal formation of the cells which were originally equal. But this divergence of form (Polymorphism) as well as the division of labour (Ergonomy) are both the necessary consequence of cellular selection, or of that struggle of parts in the organism which Roux was the first to recognize in its full importance (see above, p. 291).

In my lecture "On the Division of Labour in Nature and in Human Life," I pointed out the extraordinary importance which the division of labour, and the divergence of forms connected with it, possesses for the explanation of the most different sides of organic life. And I there discussed in detail the organization of the splendid Hood-jellies, the Siphonophora, as a peculiarly remarkable example of this division of labour. These Siphonophora are swimming communities of medusæ, which outwardly resemble a splendid flowering plant; the separate leaves, flowers, and fruit of this plant, generally as transparent as coloured glass and at the same time sensitive and agile in the highest degree, appear at first sight merely the organs of one individual, or of a single, peculiarly complex zoophyte. But, in reality, every one of these apparent organs is originally a medusa or hood-jelly, a single animal possessing the form-value of one individual. By adaptation to different tasks in life,