443

the striking warmth of the water deep down, it seems to me that things are really looking brighter. The reasoning runs as follows: The temperature of the water in the East Greenland current, even on the surface, is nowhere over zero (the mean temperature for the year), and appears generally to be -1° C. (30.2° Fahr.), even in 70° north latitude. In this latitude the temperature steadily falls as you get below the surface; nowhere at a greater depth than 100 fathoms is it above -1° C., and generally from -1.5° (29.3° Fahr.) to -1.7° C. (28.94° Fahr.) right to the bottom. Moreover, the bottom temperature of the whole sea north of the 60th degree of latitude is under -1° C., a strip along the Norwegian coast and between Norway and Spitzbergen alone excepted, but here the temperature is over -1° C., from 86 fathoms (160 metres) downward, and 135 fathoms (250 metres) the temperature is already +0.55° C. (32.99° Fahr.), and that, too, be it remarked, north of the 80th degree of latitude, and in a sea surrounding the pole of maximum cold.

This warm water can hardly come from the Arctic Sea itself, while the current issuing thence towards the south has a general temperature of about -1.5° C. It can hardly be anything other than the Gulf Stream that finds its way hither, and replaces the water which in its upper layers flows towards the north, forming the sources of the East Greenland polar current. All this seems to chime in with my previous assumptions, and supports the