simple in its rule, most comprehensive in its influence, most effectual and admirable in its operation. What evidence could be afforded of design, by laws of mechanical action, which this law thus existing and thus operating does not afford us?

5. It is not necessary for our purpose to consider the theories which have been proposed to account for the action of gravity. They have proceeded on the plan of reducing this action to the result of pressure or impulse. Even if such theories could be established, they could not much, or at all, affect our argument; for the arrangements by which pressure or impact could produce the effects which gravity produces, must be at least as clearly results of

contrivance, as gravity itself can be.

In fact, however, none of these attempts can be considered as at all successful. That of Newton is very remarkable: it is found among the Queries in the second edition of his Optics. "To show," he says, "that I do not take gravity for an essential property of bodies, I have added one question concerning its cause, choosing to propose it by way of question, because I am not yet satisfied about it for want of experiments." The hypothesis which he thus suggests is, that there is an elastic medium pervading all space, and increasing in elasticity as we proceed from dense bodies outwards: that this "causes the gravity of such dense bodies to each other: every body endeavouring to go from the denser parts of the medium towards the rarer." this hypothesis we may venture to say, that it is in the first place quite gratuitous; we cannot trace in any other phenomena a medium possessing these properties: and in the next place, that the hypothesis contains several suppositions which are more complex than the fact to be explained, and none which are less so. Can we, on Newton's principles, conceive an elastic medium otherwise than as a collection of particles, repelling each other? and is the repulsion of such particles a simpler fact than the