elasticity of the foot. But when we perceive that the head of the splint bone is behind the centre of motion in the joint, it is obvious that it must be more pressed upon in the bent condition of the joint, when the foot is elevated; and that then the bone must descend. If the splint bone be depressed when the limb is raised and bent, and have a power of recoiling (which it certainly has), it must aid in throwing out the leg into the straight position and assist the extensor muscles of the knee. Further, we can readily believe that when the elasticity of these splint bones is lost, by ossification uniting them firmly to the cannon bone, the want of such a piece of mechanism, essential to the quick extension of the foot, will make the horse apt to come down.

In looking to this sketch and comparing it with that of the hand on page 84, we see that in the horse's leg the five bones of the first digital phalanx are consolidated into the large pastern bone; those of the second phalanx into the lesser pastern or coronet; and those of the last phalanx into the coffin bone.

OF THE HORSE'S FOOT.—Nothing is better suited to illustrate our subject than the horse's foot. It is a most perfect piece of mechanism; and whilst examining it, we shall be able to infer the peculiarity of living mechanism,—that it can be preserved perfect, solely by the natural exercise