sympathies among the organs; but the whole assemblage of these nerves is more commonly known by the name of the ganglionic system, from the circumstance of their being connected with small masses of nervous substance, termed ganglia, which are placed in different parts of their course. Fig. 379, represents a ganglion (σ ,) through which the

nerve (N,) consisting at its origin of a number of separate filaments (F,) is seen to pass, before it subdivides into branches (B.) The numerous communications and interchanges of filaments, which subsequently take place at various parts, forming what is called a *plexus*, are shown in Fig. 380: where four trunks (T, T,) divide into branches, which are again separated, and variously reunited in their course, like a ravelled skein of thread, before they proceed to their respective destinations.

The ganglia are connected by nervous filaments with every part of the brain and spinal marrow, the great central organs of the nervous system; and they also send out innumerable branches, to be distributed all over the body. All the parts receiving blood vessels, and more especially the organs of digestion, are abundantly supplied with ganglionic nerves; so that, by their intervention, all these parts have extensive connexions with the brain and spinal marrow, and also with one another. The ganglia are more particularly the points of union between nervous fibres coming from