joint the opposing thumb. It is evident, therefore, that this joint belongs not to the shank or cubit, but to the foot; and that consequently a Crustacean or Arachnidan leg or arm numerically corresponds in its greater articulations with that of an insect.

Having proved, I hope, to the satisfaction of the reader, that the legs of Condylopes, with regard to the number of their principal articulations, are reducible to one type,unless we may except some of the Acaridans, or mites, and the Branchiopod Entomostracans, which appear reducible to no general rule-I shall next endeavour to show that the Condylope leg does not usually differ numerically from that of the quadruped or mammalian; and that the former consists of only four principal articulations as well as the latter, and it will not require many words, or any laboured disquisition, to prove this. The, so-called, trochanter is, with great propriety, considered by M. Latreille as being a joint of the thigh, as it really is, and in many cases, especially in Coleopterous insects, has no separate motion; consequently if this opinion be admitted, the number of articulations, both in the Condylopes and Mammalians, will be the same.

Animals that are built upon a skeleton, or encased in an external crust or rigid integument, in order to have the power of free locomotion and prehension, must necessarily be fitted with *jointed* organs, whose articulations are more numerous at the extremity, where the principal action is, that those parts may so apply to surfaces as to enable the animal to take sufficient hold of them for either of the above purposes.

There is a circumstance connected with the legs of insects which, at first sight, seems to throw some doubt upon this conclusion. The shank has often at its apex, and sometimes the cubit, certain little moveable organs, which have been called *spurs*, but which really appear to aid the animal in its