whole of it having passed through the glass C. But if the glass C be turned round 90°, (the ray $\boldsymbol{A} \boldsymbol{C}$ being supposed to be the axis of motion,) so that the ray $\boldsymbol{C} \boldsymbol{E}$ be reflected horizontally; instead of passing through the glass C, as before, the whole of the ray $\boldsymbol{C} \boldsymbol{E}$ will be reflected. If we continue to turn the plate C upon the axis $A C$, round the entire circle, these alternations of transmission and reflection, will be found to take place in the same manner, at the two other quadrants 180°, and 270°. Hence the ray $\boldsymbol{R} \boldsymbol{A}$, by reflection, has acquired properties altogether new; it is said in short, to have acquired polarity, or to have become polarized. Now recurring to Fig. 18, the ray $\boldsymbol{R} A$, in that figure, will of course follow the same laws as the ray $\boldsymbol{R} \boldsymbol{A}$, in Fig. 19 ; that is to say, the ray $\boldsymbol{A} \boldsymbol{E}$ will have acquired polarity by reflection. Let us now consider what has happened to the refracted ray $B M$, in the same Fig. 18. This ray $\boldsymbol{B} \boldsymbol{M}$ will also be found to be polarized; but if we receive it on a glass plate, $\boldsymbol{F} \boldsymbol{G}$, at the polarizing angle of 56°, we shall find that it will refuse to be reflected; whereas the reflected ray $\boldsymbol{A} E$, does not refuse to be again reflected, unless the plate $\boldsymbol{F} \boldsymbol{G}$ be turned round 90°; or into a plane at right angles to that plane in which the refracted ray $\boldsymbol{B} \boldsymbol{M}$, had refused to be reflected. Hence we conclude, that when a ray of light is incident at the polarizing angle, upon

