differently; so that the dispersion of the ore is corrected by the other, without the general refraction, which constitutes the mirror, being destroyed. A telescope $\frac{3}{2}$ feet long, made on this principle, is in effect equivalent to the oldtelescopes of 25 feet.

But the remedy of the first eause is perfecily useless at this time, because the effect of the last being much more considerable, has such great influence on the whole effect, that nothing can be gained by substituting hyperbolical, or clli tical glasses to spherical, and this substitution could net become advantageous, but in the case where the means of correcting the cffect of the different refrangibility of the rays of light might be found; it seems, therefore, that we should do well to combine the two means, and to substitute, in acromatic telescopes, ellijtical glasses.
'lo render this more obvious, let us suppose the object observed to be a luminous poirt without extent, as a fixed star is to us. It is certain, that with an objective glass, for example, of 30 feet focus, all the images of this luminous point will extend in the form of a curve to this focus, if it be worked on a sphere; and, on the contrary, they will unite in one puint if thin glas be hyferbolical; but if the

