232, in the Isle of Wight, 233, 234 ; marine and freshwater animals of great size, singular intermixture of their remains at Castello Arquata, 247.

Marl, composed of calcareous earth and clay, 32; its use in agriculture, 324.
Mastodon, skeletons of, in North America, 332; believed by the Indians not to be extinct, 307, 332; teeth of, found at Alpnach, 225 ; a cut of, $i b$.; found in the Andes, $i b$.; in Norfolk crag, 236.

Matlock High Tor, arched stratification of, 95 ; a cavern and lake recently discovered in, 302.
Megalosaurus, an enormous fossil lizard, discovered by Dr. Buckland in Stonesfield slate, 194; by Mr. Mantell, in the Wealden beds, $i b$.
Megatherium, an enormous carnivorous animal, found fossil in America, 332.
Metallic beds, 285; minerals, 284; ores, rocks in which they occur, 298; found in the sands of rivers, 297.
——veins, their structure and formation, 286, 295.
Mica, description of, 35.
slate, description of, 71 : its affinity to slate (clay slate), 73 ; allied to gneiss, $i b$. ; occurs in Anglesea and in Ireland, and in various alpine districts, $i b$. ; minerals common in mica slate, 74.
Millstone grit, 102.
Mill-stones, or burrh stones, brought from France, 232.
Mines, temperature of. See Appendix.
Mississippi, great valley of, contains the largest coal field in the world, 368, 369; structure of, 368.
Molasse, or soft tertiary sandstone, 220 221.

Molluscous animals, 21, 23.
Monkeys, no fossil remains of, $25,333$.
Mont Blanc, structure and vertical strata of, 59.
-Grenier, in Savoy, fall of, 316.
Morains, piles of stones transported by glaciers, 315.
Mountain chains and ranges, 51, 52. limestone, or upper transition limestone, 89, 90; changes in, 92; highly metalliferous, 90,98 ; not to be confounded with the calcaire alpin of foreign geologists, 100 , mountain limestone of England and Wales, 90-97. XXII. passim.

Mountains, table of heights of, 376 .
Muschel kalk, a series of calcareons strata between the red sandstone and red marl in France and Germany, wanting in England 164; muschel kalk of Germany, 190.

Muscle-bind, a stratum containing freshwater muscles in the coal strata of Yorkshire and Derbyshire, 113.
Murchison, R.J., his account of the secondary strata of part of Germany, 189; of the freshwater strata of Eningen, 248.

N.

Nagel fluc of Switzerland, or sandstone conglomerate, 220.
New red sandstone, probable formation of, 161 ; lower new red sandstone below magnesian limestone, discovered by Professor Sedgwick, $i b$.: new red sandstone and marl above magnesian limestone, 162; arrangement of the new red sandstone, where all the beds are fully developed, in the Vosges, 163; middle beds of the new red sandstone, the grès rouge and gress des Vosges of the French geologists, ib.; the upper or variegated red sandstone, the gres bigarré of the French geologists, $i b$. ; muschel kalk in France deposited between the variegated sandstone and the red marl, or narncs irrisécs of the French, ib.; red marl, the upper part of the new red sandstone formation in England, ib.; chiefly formed by the decomposition of rocks of trap and sienite, ib. ; lower new red sandstone, its arrangement with magnesian limestone, and the upper new red sandstone and marl, given by Professor Sedgwick, 167; red sandstone formation near Whitehaven, 177.
Niagara, Falls of, 216.
Norfolk crag, the most recent of the tertiary beds in England, 235; Mr. S. Woodward's account of, ib.; Mr. Taylor's account of, ib.; rests on London clay, $i b$.; organic remains in, 236; tooth of a mastodon found in, ib.; a similar formation said to be discovered near Calais, $i b$.; Brighton cliffs in some parts resemble it, $i b$.; extent of the crag, 249.
Nottingham sand rock, 166, 212.

0.

Obsidian, 130, 279.
Occan, depth and saltness of, 4; once covered the present continents, $12,13$.
Eningen, freshwater strata of, 248, 249.

Old red samdstone, a variety of greywacke, 126.
Onlario lake, 216.
Oolite furmation, extent of in England, 183, 184; mineral and fossil characters, $184-186$; triple division of the

