solution of the silex is promoted by the presence of the alkali, soda. He suggests that the deposition of silica in an insoluble state takes place partly because the water when cooled by exposure to the air is unable to retain as much silica as when it issues from the earth at a temperature of 180° or 190° Fahr. ; and partly because the evaporation of the water decomposes the compound of silica and soda which previously existed. This last change is probably hastened by the carbonic acid of the atmosphere uniting with the soda. The alkali, when disunited from the silica, would readily be dissolved in and removed by running water.*

Mineral waters, even when charged with a small proportion of silica, as those of Ischia, may supply certain species of corals, sponges, and infusoria, with matter for their siliceous secretions; but there is little doubt that rivers obtain silex in solution from another and far more general source, namely, the decomposition of felspar. When this mineral, which is so abundant an ingredient in the hypogene and trappean rocks, has disintegrated, it is found that the residue, called porcelain clay, contains a small proportion only of the silica which existed in the original felspar, the other part having been dissolved and removed by water.[†]

Ferruginous springs. — The waters of almost all springs contain some iron in solution; and it is a fact familiar to all, that many of them are so copiously impregnated with this metal, as to stain the rocks or herbage through which they pass, and to bind together sand and gravel into solid masses. We may naturally, then, conclude that this iron, which is constantly conveyed from the interior of the earth into lakes and seas, and which does not escape again from them into the atmosphere by evaporation, must act as a colouring and cementing principle in the subaqueous deposits now in progress. Geologists are aware that many ancient sandstones and conglomerates are bound together or coloured by iron.

Brine springs. — So great is the quantity of muriate of soda in some springs, that they yield one fourth of their weight in salt. They are rarely, however, so saturated, and generally contain, intermixed with salt, carbonate and sulphate of lime, magnesia, and other mineral ingredients. The brine springs of Cheshire are the richest in our country; those of Northwich being almost saturated. Those of Barton also, in Lancashire, and Droitwich in Worcestershire, are extremely rich.[‡] They are known to have flowed for more than 1000 years, and the quantity of salt which they have carried into the Severn and Mersey must be enormous. These brine springs rise up through strata of sandstone and red marl, which contain large beds of rock salt. The origin of the brine, therefore, may be derived in this and many other instances from beds of fossil salt; but as muriate of soda is one of the products of volcanic emanations and

† See Lyell's Manual of Elementary Geology; and Dr. Turner, Jam. Ed.

New Phil. Journ. No. xxx. p. 246.

‡ L. Horner, Geol. Trans. vol. ii. p. 94.

^{*} Barrow's Iceland, p. 209.