The first step to be made in all such calculations is to ascertain the average volume of water passing annually down the channel of a river. This might easily be accomplished if the breadth, depth, and velocity of a stream were constant and uniform throughout the year ; but as all these conditions are liable to vary according to the seasons, the problem becomes extremely complex. In the Ganges, as in other rivers in hot climates, there are periodical inundations, during which by far the greatest part of the annual discharge takes place; and the most important point, therefore, to determine, is the mean breadth, depth, and velocity of the stream during this period.

Mr. Everest found that, in 1831, the number of cubic feet of water discharged by the Ganges per second was, during the

Rains, (4 months)	-	-	-	494,208
Winter, (5 months)	-	-	-	71,200
Hot weather, (3 months)	-	-	36,330	

so that we may state in round numbers, that 500,000 cubic feet per second flow down during the four months of the flood season, from June to September, and less than 60,000 per second during the remaining eight months.

Having obtained the volume of water, we have next to inquire what is the proportion of solid matter contained in it; and for this purpose a definite quantity, as, for example, a quart, is taken from the river on different days, sometimes from the middle of the current, and sometimes nearer the banks. This water is then evaporated, the solid residuum weighed, and the mean quantity of sediment thus ascertained, throughout the rainy season. The same observations must then be repeated for the other portions of the year.
In computing the quantity of water, Mr. Everest made no allowance for the decreased velocity of the stream near the bottom, presuming that it is compensated by the increased weight of matter held in suspension there. Probably the amount of sediment is by no means exaggerated by this circumstance; but rather under-rated, as the heavier grains of sand, which can never rise into the higher parts of the stream, are drifted along the bottom.
Now the average quantity of solid matter suspended in the water during the rains was, by weight $\frac{1}{4.8}$ th part ; but as the water is about one half the specific gravity of the dried mud, the solid matter discharged is $\frac{1}{860^{t}}$ th part in bulk, or 577 cubic feet per second. This gives a total of $6,082,041,600$ cubic feet for the discharge in the 122 days of the rain. The proportion of sediment in the waters at other seasons was comparatively insignificant, the total amount during the five winter months being only $247,881,600$ cubic feet, and during the three months of hot weather $38,154,240$ cubic feet. The total annual discharge, then would be $6,368,077,440$ cubic feet.

In order to give some idea of the magnitude of this result, we will assume that the specific gravity of the dried mud is only one half that of granite (it would, however, be more) : in that case, the earthy matter discharged in a year would equal $3,184,038,720$ cubic feet of granite.

