As we ascend the sloping sides, the volcano appears a mass of loose materials — a mere heap of rubbish, thrown together without the slightest order; but on arriving at the brim of the crater, and obtaining a view of the interior, we are agreeably surprised to discover that the conformation of the whole displays in every part the most perfect symmetry and arrangement. The materials are disposed in regular strata, slightly undulating, appearing, when viewed in front, to be disposed in horizontal planes. But, as we make the circuit of the edge of the crater, and observe the cliffs by which it is encircled projecting or receding in salient or retiring angles, we behold transverse sections of the currents of lava and beds of sand and scoriæ, and recognize their true dip. We then discover that they incline outwards from the axis of the cone, at angles varying The whole cone, in fact, is composed of a number from 30° to 40° . of concentric coatings of alternating lavas, sand, and scoriæ. Every shower of ashes which has fallen from above, and every stream of lava descending from the lips of the crater, have conformed to the outward surface of the hill, so that one conical envelope may be said to have been successively folded round another, until the aggregation of the whole mountain was completed. The marked separation into distinct beds results from the different colours and degrees of coarseness in the sands, scoriæ, and lava, and the alternation of these with The greatest difficulty, on the first view, is to conceive each other. how so much regularity can be produced, notwithstanding the unequal distribution of sand and scoriæ, driven by prevailing winds in particular eruptions, and the small breadth of each sheet of lava as it first flows out from the crater.

But on a closer examination, we find that the appearance of extreme uniformity is delusive; for when a number of beds thin out gradually, and at different points, the eye does not without difficulty recognize the termination of any one stratum, but usually supposes it continuous with some other, which at a short distance may lie precisely in the same plane. The slight undulations, moreover, produced by inequalities on the sides of the hill on which the successive layers were moulded, assist the deception. As countless beds of sand and scoriæ constitute the greater part of the whole mass, these may sometimes mantle continuously round the whole cone; and even lavastreams may be of considerable breadth when first they overflow, and since, in some eruptions, a considerable part of the upper portion of the cone breaks down at once, may form a sheet extending as far as the space which the eye usually takes in, in a single section.

The high inclination of some of the beds, and the firm union of the particles even where there is evidently no cement, is another striking feature in the volcanic tuffs and breccias, which seems at first not very easy of explanation. But the last great eruption afforded ample illustration of the manner in which these strata are formed. Fragments of lava, scoriæ, pumice, and sand, when they fall at slight distances from the summit, are only half cooled down from a state of fusion, and are afterwards acted upon by the heat from within, and