ciple in 1743, in a great degree superseded their interest. The Transactions of the Academies of Paris and Berlin, as well as St. Petersburg, are filled, up to this time, with various questions of this kind. They require, for the most part, the determination of the motions of several bodies, with or without weight, which pull or push each other by means of threads, or levers, to which they are fastened, or along which they can slide; and which, having a certain impulse given them at first, are then left to themselves, or are compelled to move in given lines and surfaces. The postulate of Huyghens, respecting the motion of the centre of gravity, was generally one of the principles of the solution; but other principles were always needed in addition to this; and it required the exercise of ingenuity and skill to detect the most suitable in each case. Such problems were, for some time, a sort of trial of strength among mathematicians: the principle of D'Alembert put an end to this kind of challenges, by supplying a direct and general method of resolving, or at least of throwing into equations, any imaginable problem. The mechanical difficulties were in this way reduced to difficulties of pure mathematics.

4. D'Alembert's Principle .- D'Alembert's Principle is only the expression, in the most general form, of the principle upon which John Bernoulli, Hermann, and others, had solved the problem of the centre of oscillation. It was thus stated, "The motion impressed on each particle of any system by the forces which act upon it, may be resolved into two, the effective motion, and the motion gained or lost : the effective motions will be the real motions of the parts, and the motions gained and lost will be such as would keep the system at rest." The distinction of statics, the doctrine of equilibrium, and dynamics, the doctrine of motion, was, as we have seen, fundamental; and the difference of difficulty and complexity in the two subjects was well understood, and generally recognized by mathematicians. D'Alembert's principle reduces every dynamical question to a statical one; and hence, by means of the conditions which connect the possible motions of the system, we can determine what the actual motions must be. The difficulty of determining the laws of equilibrium, in the application of this principle in complex cases is, however, often as great as if we apply more simple and direct considerations.

5. Motion in Resisting Media. Ballistics.—We shall notice more particularly the history of some of the problems of mechanics. Though John Bernoulli always spoke with admiration of Newton's Principia, and of its author, he appears to have been well disposed to point out