all such phenomena as have been spoken of. We shall afterwards have to speak of the labors, undertaken in order to examine the phenomena more exactly, to which the theory gave occasion.

Thus, then, the theory of the universal mutual gravitation of all the particles of matter, according to the law of the inverse square of the distances, was conceived, its consequences calculated, and its results shown to agree with phenomena. It was found that this theory took up all the facts of astronomy as far as they had hitherto been ascertained; while it pointed out an interminable vista of new facts, too minute or too complex for observation alone to disentangle, but capable of being detected when theory had pointed out their laws, and of being used as criteria or confirmations of the truth of the doctrine. For the same reasoning which explained the evection, variation, and annual equation of the moon, showed that there must be many other inequalities besides these; since these resulted from approximate methods of calculation, in which small quantities were neglected. And it was known that, in fact, the inequalities hitherto detected by astronomers did not give the place of the moon with satisfactory accuracy; so that there was room, among these hitherto untractable irregularities, for the additional results of the theory. To work out this comparison was the employment of the succeeding century; but Newton began it. Thus, at the end of the proposition in which he asserts, 22 that "all the lunar motions and their irregularities follow from the principles here stated," he makes the observation which we have just made; and gives, as examples, the different motions of the apogee and nodes, the difference of the change of the eccentricity, and the difference of the moon's variation, according to the different distances of the sun. "But this inequality," he says, "in astronomical calculations, is usually referred to the prosthaphæresis of the moon, and confounded with it."

Reflections on the Discovery.—Such, then, is the great Newtonian Induction of Universal Gravitation, and such its history. It is indisputably and incomparably the greatest scientific discovery ever made, whether we look at the advance which it involved, the extent of the truth disclosed, or the fundamental and satisfactory nature of this truth. As to the first point, we may observe that any one of the five steps into which we have separated the doctrine, would, of itself, have been considered as an important advance;—would have conferred distinction on the persons who made it, and the time to which it belonged. All

²² B. iii. Prop. 22.