this at Vienna; but found that people there cared nothing about such novelties. He was then induced, by Baron D'Isola, to go to Holland for similar purposes. After various delays and quarrels, he was obliged to leave Holland for fear of his creditors; and then, I suppose, came to Great Britain, where he examined the Scottish and Cornish mines. He is said to have died in London in 1682.

Stahl's publications appear to have excited more notice, and led to controversy on the "so-called sulphur." The success of the experiment had been doubted, which, as he remarks, it was foolish to make a matter of discussion, when any one might decide the point by experiment; and finally, it had been questioned whether the substance obtained by this process were pure sulphur. The originality of his doctrine was also questioned, which, as he says, could not with any justice be impugned. He published in defence and development of his opinion at various intervals, as the Specimen Beccherianum in 1703, the Documentum Theoriæ Beccherianæ, a Dissertation De Anatomia Sulphuris Artificialis; and finally, Casual Thoughts on the so-called Sulphur, in 1718, in which he gave (in German) both a historical and a systematic view of his opinions on the nature of salts and of his Phlogiston.

Reception and Application of the Theory.-The theory that the · formation of sulphuric acid, and the restoration of metals from their calces, are analogous processes, and consist in the addition of phlogiston, was soon widely received; and the Phlogistic School was thus established. From Berlin, its original seat, it was diffused into all parts of Europe. The general reception of the theory may be traced, not only in the use of the term "phlogiston," and of the explanations which it implies; but in the adoption of a nomenclature founded on those explanations, which, though not very extensive, is sufficient evidence of the prevalence of the theory. Thus when Priestley, in 1774, discovered oxygen, and when Scheele, a little later, discovered chlorine, these gases were termed dephlogisticated air, and dephlogisticated marine acid; while azotic acid gas, having no disposition to combustion, was supposed to be saturated with phlogiston, and was called phlogisticated air.

This phraseology kept its ground, till it was expelled by the antiphlogistic, or oxygen theory. For instance, Cavendish's papers on the chemistry of the airs are expressed in terms of it, although his researches led him to the confines of the new theory. We must now give an account of such researches, and of the consequent revolution in the science.