Streams of lava may sometimes be traced from the of active volcanoes. cones into the adjoining valleys, where they have choked up the ancient channels of rivers with solid rock, in the same manner as some modern flows of lava in Iceland have been known to do, the rivers either flowing beneath or cutting out a narrow passage on one side of the lava. Although none of these French volcanoes have been in activity within the period of history or tradition, their forms are often very perfect. Some, however, have been compared to the mere skeletons of volcanoes, the rains and torrents having washed their sides, and removed all the loose sand and scoriæ, leaving only the harder and more solid materials. By this erosion, and by earthquakes, their internal structure has occasionally been laid open to view, in fissures and ravines; and we then behold not only many successive beds and masses of porous lava, sand, and scoriæ, but also perpendicular walls, or dikes, as they are called, of volcanic rock, which have burst through the other materials. Such dikes are also observed in the structure of Vesuvius, Etna, and other active They have been formed by the pouring of melted matter, volcanoes. whether from above or below, into open fissures, and they commonly traverse deposits of volcanic tuff; a substance produced by the showering down from the air, or incumbent waters, of sand and cinders, first shot up from the interior of the earth by the explosions of volcanic gases.

• Besides the parts of France above alluded to, there are other countries, as the north of Spain, the south of Sicily, the Tuscan territory of Italy, the lower Rhenish provinces, and Hungary, where spent volcanoes may be seen, still preserving in many cases a conical form, and having craters and often lava-streams connected with them.

There are also other rocks in England, Scotland, Ireland, and almost every country in Europe, which we infer to be of igneous origin, although they do not form hills with cones and craters. Thus, for example, we feel assured that the rock of Staffa, and that of the Giants' Causeway, called basalt, is volcanic, because it agrees in its columnar structure and mineral composition with streams of lava which we know to have flowed from the craters of volcanoes. We find also similar basaltic and other igneous rocks associated with beds of tuff in various parts of the British Isles, and forming *dikes*, such as have been spoken of; and some of the strata through which these dikes cut are occasionally altered at the point of contact, as if they had been exposed to the intense heat of melted matter.

The absence of cones and craters, and long narrow streams of superficial lava, in England and many other countries, is principally to be attributed to the eruptions having been submarine, just as a considerable proportion of volcances in our own times burst out beneath the sea. But this question must be enlarged upon more fully in the chapters on Igneous Rocks, in which it will also be shown, that as different sedimentary formations, containing each their characteristic fossils, have been deposited at successive periods, so also volcanic sand and scorize