In the interval we must suppose repeated oscillations of level, during which land covered with trees, an estuary with its freshwater shells, and the sea with its Mya truncata and other mollusca still retaining their erect position, gained by turns the ascendency. These changes were accompanied by some denudation followed by a grand submergence of several hundred feet, probably brought about slowly, and when floating ice aided in transporting erratic blocks from great distances. The glacial *till*, No. 4, then originated, and the gravel and sands, No. 5, were afterwards superimposed on the boulder clay, first in horizontal beds, which became subsequently contorted. These were covered in their turn by other layers of gravel and sand, No. 6, pp. 213 and 224, the downward movement still continuing.

The entire thickness of the beds above the chalk at some points near the coast, and the height at which they now are raised, are such as to show that the subsidence of the country after the growth of the forest bed, exceeded four hundred feet. The re-elevation must have amounted to nearly as many feet, as the site of the ancient forest, originally subaërial, has been brought up again to within a few feet of high-water mark. Lastly, after all these events, and probably during the final process of emergence, the valley was scooped out in which the newer freshwater strata of Mundesley, fig. 33, p. 224, were gradually deposited.

Throughout the whole of this succession of geographical changes, the flora and invertebrate fauna of Europe appear to have undergone no important revolution in their specific characters. The plants of the forest bed belonged already to what has been called the Germanic flora. The mollusca, the insects, and even some of the mammalia, such as the European beaver and roebuck, were the same as those now coexisting with Man. Yet the oldest memorials of our species at present discovered in Great Britain are post-glacial, or posterior in date