The line of maximum heat, or the isothermal equator, cuts the terrestrial equator under the meridians of Tahiti and Singapore, and traverses the Pacific to the south and the Atlantic to the north of the Equinoctial line. The mean temperature of this line of maximum heat is about $84^{\circ} \mathrm{F}$. : more specifically, it represents :-

$$
\begin{array}{lccccccccc}
\text { In Asia, ... } & . . & . . & . . & . . & . . & . . & . . & . . & 82^{\circ} 40^{\prime} \text { F. } \\
\text { In Africa, } & \ldots & . . & . . & . . & . . & . . & \ldots & . . & 80^{\circ} 45^{\prime} \text { F. } \\
\text { In America, } & . . & . . & . . & . . & . . & . . & \ldots . & . . & 84^{\circ} 10^{\prime} \text { F. }
\end{array}
$$

Thus, in Africa and America we find its two extremes. The Pacific

Fio. 04.-Chart of Isotiermal Lines, according to Humboldt.
Ocean is about one degree warmer under the thermal equator than the Atlantic. The southern hemisphere is, in general, much cooler than the northern, owing to the greater predominance of great basins of water in that division of the globe.

The two poles do not appear to be the coldest points of the earth ; those which are named the "poles of cold"-that is, the extreme points of the minimum terrestrial temperature-are not as yet very exactly determined. It would seem, according to Sir David Brewster, that both lie in the north, one in Siberia, the other in America; but

