names and virtues are commemorated on the brown stone slabs still standing in the oldest cemeteries. The sheets of this formation were spread out in an elongated depression in the surface of the older and underlying formations. On each side of this belt of horizontal sandstones we reach a limiting wall of tilted gneisses and bubbling granites. These were the land while the waters of Long Island Sound stretched through an estuary up to New Hampshire, and received there the waters of the embryo Connecticut. If the student of the world's history will go to the Portland quarries, he will see, spread over the ground in the vicinity of some of the offices, slabs large and small, bearing traces like the imprints of the feet of birds. These track-bearing layers of the rock are found at all depths in the quarry. The formation is generally believed to belong to the later Triassic or earliest Jurassic (Fig. 73).
The ornithic character of the footprints has been strenuously argued by Dr. Deane, the discoverer, and Professor Hitchoock, the first describer of these ichnolites. This opinion has been supported by the weight of such names as Buckland, Lyell, Mantell, and Forbes; but all observations hitherto made on the distribution of organic types through geological time tend toward the general principle that every class-type of vertebrates, and every ordinal type of invertebrates, has been introduced upon the earth in the line of succession indicated by its rank, and there is an a priori improbability of the existence of so high a type of organization as we find in birds-and birds of the size that these must have been-at a time when the reptilian type had scarcely reached its culmination.

Moreover, the Pterodactyls have made us acquainted with the existence and characters of bipedal reptiles in the very age when the bipedal footprints of the Connecticut sandstone were impressed. It should be noted, also,

