unexampled elsewhere in the world, throwing every spring an immense quantity of ice into the North Atlantic, and more especially into its western part. On the other hand, he might learn from the driftage of weed and the colour of the water, that the present great continuous extension and form of the American continent tend to throw northward a powerful branch of the equatorial current, which, revolving around the North Atlantic, counteracts the great flow of ice which otherwise would condemn it to a perpetual winter.

Further, such an observer would not fail to notice that the ridges which lie along the edges of the oceans and the ebullitions of igneous matter which proceed, or have proceeded from them, are consequences of the settling downward of the great oceanic depressions, a settling ever intensified by their receiving more and more of deposit on their surfaces; and that this squeezing upward of the borders of these depressions into folds has been followed or alternated with elevations and depressions without any such folding, and proceeding from other causes. On the whole, it would be apparent that these actions are more vigorous now at the margins of the Pacific area, while the Atlantic is backed by very old foldings, or by plains and slopes from which it has, so to speak, dried away without any internal movement. Thus it would appear that the Pacific is the great centre of earth-movement, while the Atlantic trench is the more potent regulator of temperature, and the ocean most likely to be severely affected in this respect by small changes of its neighbouring land. Last of all, an observer, such as I have supposed, would see that the oceans are the producers of moisture and the conveyors of heat to the northern regions of the world, and that in this respect and in the immense condensation and delivery of ice at its north end, the Atlantic is by far the more active, though the smaller of the two.

So much could be learned by an extra-mundane observer;