MANUAL OF GEOLGY

TREATING OF THE PRINCIPLES OF THE SCIENCE
WITH SPECIAL REFERENCE TO AMERICAN
GEOLOGICAL HISTORY




BY

JAMES D. DANA

PROFESSOR EMERITUS OF GEOLOGY AND MINERALOGY IN YALE UNIVERSITY; AUTHOR OF A SYSTEM OF MINERALOGY; CORALS AND CORAL ISLANDS; VOLCANOES; REPORTS OF "WILKES'S EXPLORING EXPEDITION, ON GEOLOGY, ON ZO¨OPHYTES, AND ON CRUSTACEA, ETC.



"Speak to the Earth and it shall teach thee."



ILLUSTRATED BY OVER FIFTEEN HUNDRED AND SEVENTY-FIVE FIGURES IN THE TEXT, AND TWO DOUBLE-PAGE MAPS.





FOURTH EDITION

AMERICAN BOOK COMPANY
1896


This electronic edition prepared by Dr. David C. Bossard
from an original document in his personal library.

October, 2005.

Copyright © 2005 by Dr. David C. Bossard.  All rights reserved.

Jurassic Archaeopteryx

Jurassic era
Archaeopteryx macrura (x 1/3) p. 788.
Solenhofen, Germany
Click on figure for image at 200 ppi (216 kb).


CONTENTS.

NOTE: To view fossils click on the "Fossils" links, or view the Illustrated Contents (3.3 Mb).


PREFACE 003  003  004  005

Table of Contents 006  006  007

Abbreviations 008  008


INTRODUCTION

Relations of the Science of Geology 9  009  010  011  012

North American Geological History, Geology, Physiography, geological history, strata,

Subdivisions of Geology  13 013  014

Physiographic Geology, Structural Geology, Dynamical Geology, Historical Geology,

PART I. - Physiographic Geology.

1. The Earth's General Contour and Surface Subdivisions 15  015  016  017  018  019  020  021  022  023  024  025  026  027  028  029

foldout, page 20

World Bathymetry Map
(200 ppi - 472 kb)

2. System in the Reliefs of the Land 30  030  031  032  033  034
3. System in the Courses of the Earth's Feature Lines  35  035  036  037  038  039  040  041

Pacific island chains, Hawaiian chain, Polynesian chain, Australasian chain,  New Zealands chain

4. Oceanic and Atmospheric Movements and Temperature 42  042  043  044  045  046  047  048  049  050  051

"The diversity about us, which seems endless and without order, is an exhibition of perfect system under law. If the earth has its barren ice-fields about the poles, and its deserts no less barren toward the equator, they are not accidents in the making, but results involved in the scheme from its very foundation." p.51-2.

  Ferrel's Law of wind rotation (1858), tidal wave motion, ocean currents, Sargasso Sea, oceanic temperatures, torrid zone, temperate zone, frigid zone, isothermal zone, atmospheric currents, atmospheric heat absorption, surface winds, moisture absorption,

5. Geographical Distribution of Plants and Animals  52  052  053  054  055  056  057  058  059  060

"The Sea, like the snow-cloud with its flakes, in a calm is always letting fall on its  bed, showers of microscopic shells, and all pelagic life adds to the showers." p. 57 Maury.

biological conditions: temperature, light, pressure, moisture, distribution of plants: ferns, lycopods, conifers, distribution of animals: Australian marsupials, Oriental mammals, African Mammals, Madigascar,  South American Neotropical region,  North American Nearetic region, European Palearctic or Eurasian region, worldwide migration of deep aquatic species,  shallow water or littoral zone species,  pelagic life, Foraminifers, Radiolaria, Rhizopods, Hexactinellids, echinoderms, Molluscs, Brachiopods,  Gastropods, worms, Crustaceans, Ganoid fish, Pelagic fish, Cestraciont sharks, 

surviving trilobite species p59, hot water species p60,

PART II. - Structural Geology.
  Corals,
1. Rocks: their Constituents and Kinds 61  061  062  063  064  065  066  067  068  069  070  071  072  073  074  075  076  077  078  079  080  081  082  083  084  085  086  087  088

Stable oxides, carbon, oxygen, Rock-making minerals: silicon, sulphur, phosphorous, nitrogen, chlorine, bromine, flourine, boron, quartz, alumina, sapphire, corundum, aluminum silicates (feldspars), mica group: muscovite, biotite, tourmaline, garnet, topaz, zircon, beryl, Magnesium silicates: chrysolite, chondrodite, hornblende, pyroxene, Magnesium silicates, talc, serpentine, chlorite group, alumina silicates, kaolinite, zeolite, carbonates, calcite (calcium carbonate),  sulphates: gypsum, anhydrite, barite, phosphates and flourides: apatite, flourite (flourspar), sulphides, pyrite, galena (lead sulphide), sphalerite (zinc sulphide), oxides, hematite (Fe2O3), Magnetite, (Fe2O4), limonite, Organic matter: calcareous limestones, fossiliferous, siliceous fossils, phosphatic fossils, guano (calcium phosphate), carbonaceous rocks, lycopods, fragmental (clastic) rocks, crystalline rocks, igneus rocks, metamorphic rocks: marble, granite, gneiss, granitoid, micro-granitic, micro-crystalline, porphyritic, foliated, fluidal, glassy, lavas, vesicular, scoriaceous, amygdaloidal, limestones (calcareous rocks): magnesian limestone (dolomyte), hydraulic limestone, Oölyte, chalk, marl, shell limestone, coral limestone, travertine limestone, fragmental rocks: conglomerate, grit, sandstone, shale, argillyte, tufa, clay, kaolin, loess, alluvium, crystalline rocks: gabbro, basalt, garnet, tourmaline, hornblende, 


2.Terranes: their Constitution, Characteristics, Positions, and Arrangement  89  089  090  091  092  093  094  095  096  097  098  099  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116

stratified formations, stria (furrows), displaced strata, outcrops, strike, inclination, dip, flexure, overthrust, anticlines, synclines, fractures, faults, conformability, unconformability,

PART III. - Dynamical Geology.

Agencies and General Subdivisions  117  117
1. Chemical Work  118  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139

solution, oxidation, deoxidation, hydration, carbonic acid erosion, calcareous formations, tufa deposits, dolomyte making, clay formation, blanching, concretization,

2. Life: its Mechanical Work and Rock Contributions  140  140
    General Remarks on Rock-making 141  141  142  143  144  145  146  147  148  149  150  151  152  153  154

rock-makers: corals, crinoids, rhizopods, diatoms, millepores, bryozoans, brachiopods, mollusks, coral reefs, atolls,


    Protective and Other Beneficial Effects  155  155
    Transporting Effects  156  156
    Destructive Effects 157  157
3. The Atmosphere as a Mechanical Agent  158  158  159  160  161  162  163  164  165

aeolian, eolian (wind) denudation, material transport,

4. Water as a Mechanical Agent 166  166  167  168  169  170

tidal wave, wind wave, water cycle: evaporation and precipitation, denudation, transportation, deposition,

    Fresh Waters: Rivers and Lakes - 171  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208
 
 fluvial history, drainage areas, floods, river velocity, raindrop erosion, river erosion, river bends, eddies, pot-holes, kettle-holes, waterfalls, sediment, deltas, flood-grounds, river flats,  alluvial cones, loess, delta-formation, Mississippi delta, great lakes, Lake Superior, Lake Michigan, Lake Huron, Lake Erie, Lake Ontario, lacustrine formations,  buried river valleys: Sierra Nevada, Subterranean waters, landslides,

   The Ocean  209  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229

 tidal waves, earthquake waves, tidal inflow, tidal outflow, beach-making, sandbars,

    Freezing and Frozen Water: Glaciers, Icebergs  230  230  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252

glaciers, glacial flow, Greenland ice, ice plasticity, glacial denudation and abrasion,  icebergs,

5. Heat 253
    1. Sources of Heat  253  253  254  255  256  257  258

    11 year sun cycles, energy of sun, effect on gulf stream,

    2. Expansion and Contraction. 259  259  260  261  262  263  264

 solar heating, drying, cooling contraction, basaltic rock, obsidian column, earth interior heating, subterranean heat gradient, 

    3. Igneous Action and its Results 265  265  266
        Volcanoes  267  267  268  269  270  271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295  296

 Mount Shasta, Mount Vesuvius, lava cones, Hawaiian volcanoes, Loa, Kea, Kilauea, lava,  igneus rocks: basaltic class, andesyte class, trachyte class, scoria, volcanic bombs, explosive eruptions, Krakatoa, fumaroles, solfataras,

        Non-volcanic Igneous Eruptions 297  297  298  299  300  301  302  303  304
        Thermal Waters, Geysers. 305  305  306  307  308
    4. Metamorphism  309  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326

 metamorphic rock, trap dikes,


    5. Mineral Veins, Lodes, Local Ore Deposits  327  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344

 fissure veins, gold-bearing quartz veins, Lake Superior copper mines, Comstock Lode, Leadville, Eureka,


6. Hypogeic Work: Earth-shaping, Mountain-making 345  345  346  347  348  349  350

 inland ancient shorelines, effects of polar icecaps, piling of ice over land, Eocene Nummulitic beds, Cretaceous beds, Rocky Mountain region, Appalachian region Carboniferous period, thickness tens of thousands of feet, unequal global changes, secular changes: extremely slow subsidence -- a few inches or feet a century, paroxysmal changes: abrupt displacements, 16 cycles of alternate emergence and submersion (coal formation of Illinois), subsidence of Jupiter Serapis temple at Pozzuoli, contemporary Greenland subsidence, gradual subsidence of coral reefs

    1. Characteristics of Disturbed Regions and Mountains. 351  351  352  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368

 flexure faults, solid flow,  displacements under pressure,  paleozoic formation Appalachian Mountain range - Carbonic age, orographic science, upthrust faults, Shenandoah plateau, Cumberland Tableland, 30,000-40,000 feet of strata, geosyncline, Palisade Mountain System, Connecticut River Range - Triassic, Sierra Nevada Range - Jurassic,  Laramide Mountain System, Wasatch Range, The great geanticline - Cretaceous, Laramide chain, Rocky Mountain geosynclines, Great Basin,

    2. Subordinate Effects attending Orographic Movements:
        Effects from Pressure, Earthquakes 369  369  370  371  372  373  374  375

 foliation, slaty cleavage, lines of fracture, Lisbon earthquake 1755,

    3. Origin of the Earth's Form and Features:
        Orogenic Work, Epeirogenic Work 376  376  377  378  379  380  381  382  383  384  385  386  387  388  389  390  391  392  393  394  395  396

 isostasy, continental plateaus, oceanic depressions, orogeny, gravitational theory, contraction theory, geanticlines, geosynclines, Cincinnati uplift - middle Silurian, torsion

PART IV. - Historical Geology.

The life of the globe has changed with the progress of time. Each epoch has had its peculiar species, or peculiar groups of species.  p400-401.

Subdivisions in Geological History 397  397  398  399  400  401  402  403  404  405  406  407  408  409  410  411  412

 Geological eras, equivalent strata, geological horizon, geologic synchronism, homotaxial strata (Huxley), order of superposition,  Coal formation in North America and Newcastle England same geological age, Agassiz principle (recapitulation), fossil trituration, four divisions: Archaean - closes with visible life, Paleozoic - closed with coal formations, Mesozoic - closed with chalk or cretaceous formations, Cenozoic, subdivisions: aeons, eras, periods, epochs, series, systems, groups, stages,
Archaean: Laurentian, Huronian, Paleozoic: Cambrian, Lower Silurian, Upper Silurian, Devonian, Carbonic, Mesozoic: Triassic, Jurassic, Cretaceous, Cenozoic: Tertiary, Quaternary, Paleozoic - Reign of Fishes, Mesozoic - Reign of Reptiles, Cenozoic - Reign of Mammals.

Review of the System of Life 413  413

 Life: enlarges, converts nutrients, successive stages, Plants: absorb nutrients, inspire carbonic acid, release oxygen, ingest inorganic matter, immobile or limited motion, up-down polarity, no self-consciousness, Animals: ingest nutrients into mouth or sac, inspire oxygen, release carbonic acid, ingest organic matter, mobile, antero-posterior polarity, self-consciousness.

1. Animal Kingdom 414  414  415  416  417  418  419  420  421  422  423  424  425  426  427  428  429  430  431  432  433

 vertebrates: mammals, birds, reptiles, amphibians, fishes, leptocardians, invertebrates, Palaeichthyes: selachians, ganoids or gars, dipnoans or lung-fishes, teleosts, cyclostomes or lampreys, invertebrates: protozoans, radiates: polyps, hydrozoans, echinoderms, Mollusks, Articulates, Arthropods, insects, myriapods, arachnids, Limuloids, crustaceans,, worms (vermes), mollusks: cephalopods, Pteropods, Scaphopods, Gastropods, Lamellibranchs, Molluscoids: Brachiopods, bryozoans, Echinoderms: asteroids, echinoids, ophiuroids, crinoids, blastoids, cystoids, coelenterates: hydrozoans, actinozoans, anthozoans, polyps, spongiozoans, Protozoans: Rhizopods, radiolarians,

2. Vegetable Kingdom 434  434  435  436  437  438  439

 Phaenogams: Exogens: Gymnosperms, Angiosperms, Endogens, Cryptogams or flowerless plants: Acrogens or higher cryptogams: Horse-tails or Equiseta, Lycopods or Ground-pines, ferns, Lower Cryptogams: mosses, lichens, fungi, algae or seaweeds, stromatopora corals, possible organic calcium phosphate (apatite),

 Cephalization,

I. ARCHÆAN TIME 440  440  441  442  443  444

 Astral, Azoic: Lithic, Oceanic, Archaeozoic, 

    1. Subdivisions: Rocks 445  445  446  447  448  449  450  451  452

 Laurentian era, Huronian era, Algonkian formation, iron ore beds,

    2. Life 453  453  454  455  456  457  458  459

 evidence of life: limestone, graphite, carbonaceous shales, limestone chert in Penokee belt, jasper from silica-secreting algae,




EOPALEOZOIC SECTION


II. PALEOZOIC TIME 460  460  461

    I. Cambrian Era 462  462  463

 Eopaleozoic: Cambrian, Lower Silurian, Reign of invertebrates (esp. trilobites), Neopaleozoic: Upper Silurian Devonian, Carbonic - Reign of fishes, cryptogams, phaenogams, gymnosperms, trilobites,

 
        1. North American 464  464  465  466  467  468  469

 algae plant life, invertebrate animal life: sponges, corals, hydrozoa, echinoderms, worms, brachiopods, molllusks, arthropods, trilobites

            1. Lower Cambrian Period Fossils 470  470  471  472  473


 sponges, corals, graptolites, echinoderms, worms - scolithus (worm-borings), brachiopods (inarticulate and articulate), molluscs - lamellibrancha, gastropods, crustaceans (trilobites)

            2. Middle Cambrian Period Fossils 474  474  475
 
 Sponges, Echinoderms, cystoids, Brachiopods, Mollusks, Crustaceans, Paradoxide trilobites,

           3. Upper Cambrian Period Fossils 476  476  477  478  479

 Potsdam sandstone, genus Dicellocephalus trilobites,  Rhizopods, sponges, cystoids, Brachiopods, Pteropods, Gastropods, trilobite tracks, Wolcott

      2. Foreign 480  480  481  482

      3. Geographical and Physical Conditions and Progress 483   483  484  485  486  487  488

"Of the many species of Trilobites from the Lower Cambrian, very few are nown to occur in the Middle Cambrian; and few of those of the Middle, in the Upper... the thickness of the rocks proves that the three divisions of the period were immensely long." p. 487-8.

 Potsdam sandstone wave ripple-marks

II. Lower Silurian Era Fossils 489 [Now known as the Ordovician Era. See p.489.]

    1. North American 489  489  490  491  492  493  494  495  496  497  498  499  500  501  502  503  504  505  506  507  508  509  510  511  512  513  514  515  516
 
 Lower Silurian - Ordovician, limestone - mostly dolomyte; some calcyte, Cincinnati uplift,  Calciferous epoch, Chazy epoch,  Trenton period, Hudson epoch, insects, fishes, sponges, hydrozoans, Hydrozoan corals,

   2. European  517  517  518  519  520  521  522  523

    3. General Observations: Rocks; Climate; Biological Progress  524  524  525

    4. Upturning at the close of the Lower Silurian 526  526  527  528  529  530  531  532  533  534

 Cincinnati geanticline, thickness up to 20,000 ft.,



NEOPALEOZOIC SECTION

Eopaleozoic - thalassic period - continental seas, Neopaleozoic - land emergence, land-life emergence: forests, amphibians, reptiles, largest insects, land invertebrates,
Subdivisions: Lower Helderberg Period (Upper Pentamerus epoch, Shaly limestone epoch, Lower Pentamerus epoch), Onondaga Period (Salina beds, Water-lime, Tentaculite limestone), Niagara Period (Niagara epoch (shale, limestone), Clinton epoch (Clinton group), Medina epoch (Oneida beds, Medina beds)

III. Upper Silurian Era 535
    1. North American 535  535  536  537
 
 Cincinnati uplift, embryonic Hudson River, Mississippi, St. Lawrence, Shawangunk grit, 

       1. Niagara Period Fossils 538  538  539  540  541  542  543  544  545  546  547  548  549  550  551

Medina epoch, Clinton group,  red fossil ore,  Acadian trough,


        2. Onondaga Period Fossils 552  552  553  554  555  556  557

 Onondaga period: Salina group - shales and marlytes, Salt group brines, Water-lime group,

        3. Lower Helderberg Period Fossils 558  558  559  560  561  562

 Helderberg beds, Hudson River, Lake Champlain, Montreal, Lower Pentamerus limestone, Catskill limestone, Scutella limestone,

     2. Foreign  563  563  564  565  566  567  568  569

 May Hill Sandstone, Shropshire England, Gloucestershire England, Upper Llandovery group, Wenlock Group, Ludlow Group

    3. General Observations: Geological; Geographical; Biological  570  570  571  572  573  574

 Appalachian geosyncline, shallow seas and emerging seashore flats, earliest Arachnids (Scorpions) cockroaches (Orthopters), Graptolite & trilobite diminution, increase in Brachiopods, increase in Pteropods, Gastropods, advance from entomostracans to tetradecapod crustaceans, fishes (Placoderms) only vertebrates in Upper Silurian,

IV. Devonian Era  575

 Old Red Sandstone (Scotland), low grade land population,

    1. North American 575  575  576

 Early Devonian - Oriskany, Corniferous epochs, Middle Devonian - Marcellus shales, Hamilton beds of Tully limestone, Upper Devonian - Portage group, Chemung group, Oriskany sandstone, Cauda-galli grit, Schoharie grit, Oniondaga limestone, Corniferous limestone, Goniatite limestone, Tully limestone, Catskill formation, Eodevoniqan, Mesodevonian, Neodevonian, Erian,

        1. Oriskany Period 577  577  578
        2. Corniferous Period Fossils 579  579  580  581  582  583  584  585  586  587  588  589  590  591

        3. Hamilton Period Fossils 592  592  593  594  595  596  597  598  599  600  601

       NOTE: Figures 923 and 924 were subsequently shown to be carboniferous, rather than Devonian as claimed. See Randal F. Miller, History of Geological Investigation of Saint John, New Brunswick: "Along with plants the site yielded reptile/ amphibian tracks. Arthropods, particularly insect remains, attracted attention from geologists worldwide. At the time the rocks were considered to be of Devonian age, making the insect assemblage the oldest known in the world... Subsequent work by British paleobotanist Marie Stopes (1914) in a Geological Survey of Canada Memoir proved the Carboniferous age of the rocks."

Eureka Devonian limestone,  Gymnosperms, Sporangites, Spongiozoans,

        4. Chemung Period Fossils 602  602  603  604  605  606  607  608  609  610  611  612  613  614  615  616  617  618  619  620  621

Chemung Period (Later Devonian): Portage epoch, Chemung epoch, Catskill group, Genesee shale, Portage group, Naples group, Ithaca group, Cayuga lake


    2. Foreign Fossils  622  622  623  624  625  626  627

 Old Red Sandstone of Scotland 10,000-16,000 ft. thickness, Eurypterids,

    3. General Observations: Geological; Geographical 628   628  629
    4. Upturning at the close of the Devonian 630  630

Carboniferous, coal-making, Pennsylvanian period, Mississippian period

V. Carbonic Era  631  631  632
    1. North American 633  633  634  635
        1. Subcarboniferous Period Fossils 636  636  637  638  639  640  641  642  643  644  645  646
 
 Mississippian group: Kinderhook Group, Osage Group, St. Louis Group, Chester or Kaskaskia Group

       2. Carboniferous Period 647  647  648  649  650  651  652  653  654  655  656  657  658  659

Pottsville Conglomerate, Coal-measures, Anthracite coal region, Bitumionous coal region, Cannel coal, Mauch Chunk, Nesquehoning Valley, Carbondale Calamite forest, Lepidodendron, 

        3. Permian Period 660  660  661  662  663  664  665

             Life of the Carboniferous Period  Fossils 666  667  668  669  670  671  672  673  674  675  676  677  678  679  680  681  682  683


             Life of the Permian Perio  Fossils 684  685  686  687  688  689  690  691  692

Lycopods 60-90 ft. tall, modern Horse-tails, Ground-pines

    2. Foreign  Fossils 693  693  694  695  696  697  698  699  700  701  702  703  704  705  706  707

    3. General Observations: Geological and Geographical; Meteorological; Formation of Coal 708  708  709  710  711  712  713

"The Coal period was a time of unceasing change, - eras of verdure alternating with others of wide-spread waters, destructive of all the vegetation and of other terrestrial life except that which covered regions beyond the Coal-measure limits. Yet it was an era in which the changes went forward for the most part with such extreme slowness, and with such prevailing quiet, that, if man had been living then, he would not have suspected their progress." p. 710
TO HERE

    General Observations on Paleozoic Time  714   714  715  716  717  718  719  720  721  722  723  724  725  726  727

 merosthenic, prosthenic,

[p. 726-7] The term Paleozoic is not simply a name for a division of geological time. It expresses a profound historical truth. It signifies the reality of a Paleozoic character in the world's early life which was exhibited not only in the very earliest of plants and animals, but also throughout the succession of species, and so decidedly that the Paleozoic world stands out in bold contrast with the Mesozoic. Corals, Crinoids, Trilobites, brachiopods and Mollusks, even Cephalopods, commence in the Cambrian and are prominent throughout the Paleozoic time. Brachiopods at its close lose nearly all otheir Paleozoic genera; Crinoids drop their Paleozoic characteristics, and corals also with few exceptions; Nautiloids lose nearly all their Orthoceras-like forms; while the coiled Nautilus-like species culminate in the Carboniferous,m and have few species and genera afterward. So the Insects had Paleozoic features which were dropped at the same time. The Placoderm, Dipnoan, and Ganoid Fishes, which were eminently Paleozoic types, culminated in the Devonian and Carboniferous eras, and only inferior Dipnoans and Ganoids existed later. Cryptogamous Plants culminated in the Carboniferous era, and only the Calamites and some related genera, and a few genera of ferns survived into the Mesozoic.

The disappearance of species at the close was not due chiefly to physical catastrophe, for the Trilobites had dwindled greately by the close of the Devonian; and similar expansions to culmination in many other tribes, with subsequently a commencing decline, occurred both among plants and animals.



Principles of Biological Change and Progress for Animals:
    1. From the simple, regular, or primitive in structure to the specialized.
        a. From a structure with two or more functions to organs, each with its specialized function.
        b. From a single-function organ has several uses, to special forms for each kind of use.
        c. From simpler forms of specialization to more complex, better adapted forms.
        d. From a specialized form to others with newly acquired uses
        e. From a head with large sense-organs and mouth-organs to one with smaller and well-compacted organs.
        f, From large aquatic structures to smaller terrestrial structures.
    2. Approximate parallelism between geological succession of structures and embryological succession in development.
    3. Degeneration: a. Of an organ to a more primitive form; b. diminished size or disappearance of an organ; production of low-grade structures that have needed form and activity
    4. From diffuse to concentrated structures.
       a. From elongated to abbreviated; b. From multiple, indefinite number of segments, to limited numbers and arrangement; c. From posterior locomotive organ to anterior locomotive organ; d. From stronger posterior limbs (merosthenic) to stronger anterior limbs (prosthenic).

Principles of Biological Change and Progress for Land Plants: Rhizocarps (Acrogens, spores), Protosalvinia (Equiseta - Calamites and Annulariae),  Selaginella lead to Lepidodendrids lead to Sigillaroids, Acrogens and Yews and true gymnosperms (Conifers). Precursor to Ferns not known. Ferns led to Cycads, the other division of Gymnosperms. Thus gymnosperms had a double source. Lepidodendrids absent from Permian and Sigillaroids absent after Permian. Equiseta maximum development during Carboniferous. Later Calamites and Equiseta become inferior modern types.

Invertebrates: 1. Hydrozoans; Actinozoans: Graptolites begin in Cambrian, disappear in Lower Devonian. Cyathophylloid Corals begn in Cambrian, increase in Silurian, (almost) disappear in Lower Carboniferous. Challenger expedition dredged living Cyathophylloid Coral from ocean bottom. Favosites Corals ended in Devonian. 2. Echinoderms: Cystoids (Crinoids) end in Devonian. No paleozoic types of Crinoids survive after Permian; in Mesozoic, genus Encrinus appears, related to the modern Pentacrinus. Starfishes begin in Cambrian and Echinoids in the Silurian. 3. Molluscoids. Brachiopods begin in Cambrian. Most abundant of all Paleozoic animal life. All but 4 genera disappear at end of Permian: survivors are Lingula, Crania, Spirifer, and Rhynchonella. 4. Mollusks: Pteropods dominate in Early/Mid-Cambrian, diminish after Lower Silurian (Ordovician). Lamellibranchs & Gastropods very small forms in Early Cambrian. Cephalopods culminate after Paleozoic times. 5. Limuloids. Eurypterids begin in Lower Silurian (Ordovician). Great size through Devonian, diminish to small species in Carboniferous. Limulids appear in Silurian through Carboniferous, continue in compacted form to present. The Large Eurypterids, several feet in length, would have been helpless among Sharks and Ganoids. 6. Crustaceans. Trilobites flourish in Lower Silurian (Ordovician); achieve extravagant forms in Devonian, but diminish in number of species in Carboniferous. End after Carboniferous. Cirripeds (Barnacles) appear in Lower Silurian (Ordovician). True Isopods appear in early Devonian, probably successors to trilobites. Macruran Decapods (Shrimps) appear in Devonian and Brachyurans (Crabs) in Carboniferous. 7. Myriapods, Arachnids, Insects. Arachnids & Insects begin in Upper Silurian era, Myriapods in Lower Devonian. Achieve great size in Devonian and Carboniferous, wingspread exceeding two feet. Orthopteroids (Cockroach family) have great loss in size after Carboniferous. Scorpions of Upper Silurian are much like modern species. True Spiders (Arachnids) appear first in Carboniferous, possibly because they are not well-preserved as fossils. Myriapods first appear in early Devonian. Higher Insects typically experience metamorphisis


Vertebrates: 1. Fishes (Placoderms, Ganoids, Sharks). Pteraspids commence in Lower Silurian (Ordovician). Long vertebrated tails. Ganoids (Crossopterygians) also commence in Lower Silurian (Ordovician). Many Selachians, Dipnoans and typical Ganoids flourish in the Devonian. Brachiates (armor-clad) fish appear (and end) in the Devonian.  Lung-fish (Dipnoans) appear in Carboniferous. 2. Amphibians and Reptiles. Amphibians are common in the old Carboniferous. True Reptiles appear in the Permian.


    Post-Paleozoic, or Appalachian, Revolution  728  728  729  730  731  732  733  734  735  736

    Topographic Changes in the Indian Ocean: Gondwána Land 737  737



III. MESOZOIC TIME  738  738
    1. American Triassic and Jurassic Period  Fossils 739   739  740  741  742  743  744  745  746  747  748  749  750  751  752  753  754  755  756  757  758  759  760  761  762  763  764  765  766  767

Mesozoic subdivisions: Cretaceous - Chalk Period, Jurassic - Jura limestone, Triassic - Variegated sandstone, Buntersandstein, Poikilitic group, conybeare, Buckland, New Red Sandstone, Lower Jurassic - Liassic, Middle Jurassic - Oölytic, Upper Jurassic - Portlandian, Lower triassic - Lower Trias or Vosgian, Middle Trias - Franconian, Upper Trias - Keuperian, Rhoetic,  Pacific Border: Rocky Mountain belt, Plateau belt, Sierra belt, Coast belt,
 
    2.  Foreign Triassic and Jurassic Fossils 768  768  769  770  771  772  773  774  775  776  777  778  779  780  781  782  783  784  785  786  787  788  789  790

   3. General Observations: Continental Comparisons; Climate; Biological Changes; Upturnings and Mountainmaking  791  791  792  793  794  795  796  797  798  799  800  801  802  803  804  805  806  807  808  809  810  811
 
 homocercal, heterocercal, reduction in vertebrae, modern insects, Mammal differentiation of teeth: incisors, canines, molars, locomotion: caudal or urosthenic, limbs or podosthenic, hind-limb locomotion, small brain era, degeneration: toothed to toothless jaws, many to few teeth, limbs to paddles, turtles, Australia as the Triasssic continent: Marsupial and Monotreme mammals, Sierra Nevada formed at close of Jurassic,

 [p. 794] The Triassic period is, after the Cambrian, the most eventful in the earth's biological history; that is, the most productive of great branchings in the higher departments of the Animal Kingdom. ... Through geological time progress was downward as well as upward"

   4. American Cretaceous Period Fossils 812  812  813  814  815  816  817  818  819  820  821  822  823  824  825  826  827  828  829  830  831  832  833  834  835  836  837  838  839  840  841  842  843  844  845  846  847  848  849  850  851  852  853  854  855

lower cretaceous: Trinity Epoch, Fredericksburg Epoch, Washita epoch, Potomac formation, upper cretaceous: Dakota epoch, Colorado Epoch, Montana Epoch, Laramie Epoch,  tombigbee sands, Ripley group, Austin limestone, Ponderosa marls,

    5. Foreign  Fossils  856  856  857  858  859  860  861  862  863  864  865  866

 Southeastern England Cretaceous, Dorset, Norfolk, London-Paris basin, Lower Cretaceous: Neocomian, Wealden, Lower Greensand, Upper Cretaceous: Gault or Albian, Cenomanian, Turonian, Senonian, Danian, Maestricht beds,


   6. General Observations: Geological; Geographical; Biological; Gondwána Land 867  867  868  869  870  871  872  873

 Cretaceous Cycads flourish,  Unknown origin of Angiosperms, Ammonites disappear at close of Cretaceous,  reign of the Reptiles in the Wealdon

    Post-Mesozoic Revolution 874  874  875  876  877  878


IV. CENOZOIC TIME  879

    I. Tertiary Era  Fossils 879  879

Tertiary: era of Mammals, Quaternary; era of Man.

        1. North American 880  880  881  882  883  884  885  886  887  888  889  890  891  892  893  894  895  896  897  898  899  900  901  902   903  904  905  906  907  908  909  910  911  912  913  914  915  916  917  918

Tertiary = Neozoic, Cenozoic: Eocene, Miocene, Pliocene, Oligocene,  Laramie beds, Eocene: Jackson Epoch, Vicksburg Epoch, Miocene, Chattahoochee Epoch, Chipola Epoch, Yorktown, Epoch, Chesapeake, Chipola group, Pliocene, Floridian Epoch, Merced group, digitigrade

        2. Foreign  919  919  920  921  922  923  924  925  926  927

Mesozoic era closed with catastrophe of wide exterminations of species, Calcairre grossier, Nummulitic limestone Eocene beds, Alps, Oligocene Molasse in Switzerland,

       3. General Observations: Biological; Orogenic and Epeirogenic; Climate 928  928  929  930  931  932  933  934  935  936  937  938  939

 No precursors of placental Mammals,

    II. Quaternary Era  940  940  941  942

Quaternary Era =  the Era of Man: glacial period,  Champlain Period, Recent Period, Pleistocene, Laurentide ice-plateau, Drumlins, Eskers, Kames


        1. Glacial Period  943
            1. American  943  943  944  945  946  947  948  949  950  951  952  953  954  955  956  957  958  959  960  961  962  963  964  965  966  967  968  969  970  971  972  973  974


foldout, page 944

North America Map,
Glacial and Champlain periods
(200 ppi - 664 kb)


            2. Foreign  975  975  976  977
            3. Cause of Glacial Climate 978  978  979  980
        2. Champlain Period 981
            1. American  981  981  982  983  984  985  986  987  988  989  990  991  992  993  994
            2. Foreign  995  995  996
        3. Pleistocene Life  Fossils 997  997  998  999  1000  1001  1002  1003  1004  1005  1006  1007  1008  1009  1010  1011
 
p. 997: "Plants and invertebrates of the Quaternary are, with rare exception, living species, while the Mammals are nearly all extinct."


       4. Recent Period 1012  1012  1013  1014  1015
       
        General Observations: Biological; Antarctic Continent; Epeirogenic 1016  1016  1017  1018  1019  1020  1021  1022


General Observations on Geological History  1023


Geological Time 1023 1023  1024  1025

[1023] [Length of Geological Time] The evidence at present favors the conclusion that the relative duration of the Cambrian and Silurian, the Devonian and the Carboniferous eras, corresponds to the ration 4 1/2:4:1 or perhaps 4:4:1; and for the Paleozoic, Mesozoic, and Cenozoic, 12:3:1.

[1024] Length of geological time according to geological evidence. – The facts from geology used as a basis for calculating the length of geological time since the Archaean are: the rate of sedimentation or accumulation, and the rate of erosion or denudation, the former usually made dependent on the latter.

[1025] Mellard Reade makes the time since the Archaean,… 95,000,000 years (1893). C.D.Walcott deduces, for the elapsed time, 70,000,000 years (1893); H.H. Hutchinson, 600,000,000 years (1892); M’Gee, 6,000,000,000 years (1893). All of these estimates proceed on the solid basis of existing facts.

[1025] Length of geological time on evidence from terrestrial physics. – Kelvin pointed out in 1862 that a limit to the earth’s age is fixed by the known facts as to the rate of downward increase of heat and the rate of loss of heat into space; that if the earth had cooled less than 20,000,000 years since, the internal heat would have been greater than now; and if more than 400,000,000 years, there would have been no sensible increase of heat downward; and he suggested a probable length of 100,000,000 years.

"the safe conclusion from all the Geological and Physical facts is that Time is long, very long; long enough for the development of all the earth's rocks, mountains, continents, and life. Geologists have no reason to feel hampered in their speculations, while the extreme results of calculation are 10,000,000 and 6,000,000,000 years."  Note: Current age of the Earth is 4.55 Billion years - DCB.

Climate ; the Earth's Development 1026   1026  1027


Progress in the Earth's Life 1028  1028  1029  1030  1031  1032  1033  1034  1035  1036

INDEX 1039   1039  1040  1041  1042  1043  1044  1045  1046  1047  1048  1049  1050  1051  1052  1053  1054  1055  1056  1057  1058  1059  1060  1061  1062  1063  1064  1065  1066  1067  1068  1069  1070  1071  1072  1073  1074  1075  1076  1077  1078  1079  1080  1081  1082  1083  1084  1085  1086  1087

CORRECTIONS AND ADDITIONS 1088  1088