velopment of the cretin, and with most successful results.

We cannot follow the history; it is enough to say that although much remains uncertain as to what exactly the thyroid, with its internal secretion, does to the blood, there is no doubt that this inconspicuous organ does something essential in keeping the blood and nervous system up to a certain standard of efficiency.

Another characteristically modern physiological movement has been the analysis of the nervous mechanism which determines alike the behaviour of animals and the conduct of man. This is the supreme and the most baffling problem of the physiologist, and he has moved towards its solution along two paths which have led him to results sometimes congruent, and yet often discrepant, encouraging and yet warning him at every turn.

One of the two paths is experimental, and among those who have moved most steadily along it are Ferrier, Fritsch, Hitzig, Munk, Goltz, and Horsley. One of their main aim and, to some extent, achievements, has been the localization of certain functions in certain parts of the brain, and along certain tracts of the nervous system. The inquiry was begun by Willis, but in the period between him and Horsley even the language has changed.

The other path is histological—the attempt by microscopic analysis to find a way through the extraordinary maze of cells and fibres which form the brain and spinal cord. Albert von Kölliker was one of the most illustrious pioneers, and even as veteran he has not ceased to lead. No small part of the progress, however, has been due to the discovery of new methods which we especially associate with the names of the Italians Golgi and Marchi, and the Spaniard Ramon y Cajal.

The cell-doctrine of Schwann and Schleiden (1838-9) was not merely a morphological generalization (that all Cellular organisms have a cellular structure), it was Physiology. also a physiological theory which sought to express the function of an organ in terms of the changes