CONTENTS.

Royal Institution, 264; Manchester Literary and Philosophical Society, 265; John Dawson of Sedbergh, 267; The Scotch Universities, 267; The Royal Society of Edinburgh, 269; The 'Edinburgh Review,' 270; The Analytical Society of Cambridge, 271; University life in Scotland, 271; The Dublin Mathematical School, 274; Importance of British contributions to science, 276; Diffusion of scientific knowledge on the Continent, 276; Isolation of English men of science, 277; Individualism of the English character, 279; Changes during the last fifty years, 280; British contributions to biology, 282; Jenner, 284; English love of nature, 284; Union of individualism and naturalism in England, 286; White of Selhorne, 288; The Geological Society, 290; William Smith, 291; Charles Bell, 292; Historical Geography, 294; Martin William Leake, 296; Work of the three nations compared, 298.

CHAPTER IV.

THE ASTRONOMICAL VIEW OF NATURE.

The scientific spirit in the first and second half of the century, 302; Science become international, 303; Disappearance of national differences, 305; Special scientific ideas, 306; Philosophy of science, 306; Whewell's 'History' and 'Philosophy,' 309; Philosophy and science, 311; Leading scientific ideas mostly very ancient, 312; Mathematical spirit, 314; When first introduced into science, 317; Newton's 'Principia,' 318; The gravitation formula, 319; Lines of thought emanating from it, 321; Element of error, 323; Laplace and Newton, 326; Several interests which promote science, 326; Insufficiency of observation, 328; Practical interest, 328; Focalising effect of mathematical formulæ, 382; Matter and force mathematically defined, 334; Weight and mass, 336; Gravitation not an ultimate property of matter, 338; Attraction and repulsion, 342; Electrical and magnetic action, 344; Law of emanations, 344; Molecular action, 346; The astronomical view: Cosmical, molar, and molecular phenomena, 348; Special interest attached to molar dimensions, 350; Geometrical axioms, 352; Difficulty of measuring gravitation directly, 353; Astronomical view of molecular phenomena, 354; Capillary attraction, 356; Boscovich's extension of the Newtonian formula, 357; Coulomb's measurements, 360; Extended by Gauss and Weber, 360; Davy and Faraday, 363; Ampère and Weber develop the astronomical view, 366; Weber's fundamental measurements, 368; Necessity of developing the infinitesimal methods, 373; Newtoniau formula the basis of physical astronomy, 375; The Newtonian formula unique as to universality and accuracy, 377; Is it an ultimate law? 378; Laplace's opinion, 378; Opposition to the astronomical view of nature, 381.