CH₄, very closely resembles normal butane, $CH_3 \cdot CH_2 \cdot CH_2 \cdot CH_3$; and again propionic acid, $CH_3 \cdot CH_2 \cdot COOH$, and heptylic acid, $CH_3 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot COOH$, are very much alike.

Quite different is the case when any other radical accumulates in the molecule. For instance, propyl alcohol, CH₃·CH₂·CH₂·OH, which closely resembles ordinary alcohol, $CH_3 \cdot CH_2OH$, is very different in its behavior from glycerine, CH₂OH · CHOH · CH₂OH, and similarly, acetic acid, CH₃·COOH, differs materially in properties from oxalic acid COOH·COOH. Even more marked are the differences when a radical accumulates upon a single carbon atom. In successive stages of oxidation ethane, $CH_3 \cdot CH_3$, yields alcohol, $CH_3 \cdot CH_2OH$, aldehyde, $CH_3 \cdot CH(OH)_2$, which by a secondary transformation goes over into the more stable form CH₃·CHO, and acetic acid, CH₃·C(OH)₃, which similarly becomes $CH_3 \cdot COOH$. These changes correspond to the conversion of ethane, that is monomethyl methane, into dimethyl methane, trimethyl and tetramethyl methane: --

 $CH_3 - CH_3 \rightarrow CH_3 \cdot CH_2 \cdot CH_3 \rightarrow$