base of the side arms, with the larger joints of the vertebral column. See V. I. p. 439. Note. (Original.)

- Fig. 8. Magnified Section of a portion of a Column in the Oxford Museum. The joints, as in Pl. 52, Fig. 4, 5, and in Pl. 49, Figs. 3, 4, are alternately thicker and thinner; with a third, and still thinner joint interposed between them. See V. I. p. 435, Note. (Original.)
- Fig. 8^b. Nat. size of Fig. 8.
- Fig. 8°. Portion of a Column, shewing the manner in which the edges of the thinnest plates, c, are visible along the salient angles only. In the intermediate grooves the thicker plates, of the first and second sizes, a, b, overlap and conceal the edges of the thinnest plates, c. The principle of this mechanism is the same as in Pentacrinites subangularis, Pl. 52, Figs. 4, 5, and in Encrinites moniliformis, Pl. 49, Figs. 3, 4; but the circular form of the column in the latter, causes the smallest plate, c, to be visible around its entire circumference. See V. I. p. 435, Note. (Original.)

The bases of two side arms are seen in two of the grooves, articulating with the uppermost large joint of this column. On other large joints are seen the sockets from which similar side arms have fallen.

Figs. 9, 10, 11, 12, 13. Various stellated forms on the articulating surfaces of Vertebræ, preserved in the dislocated mass beneath Figs. 1, 2. These petalshaped, and crenated rays were probably adapted to produce various degrees of flexibility, according to their respective places in the column. The small Vertebra on Fig. 13, is derived from another individual. (Original.)

The aperture at the centre of all these Vertebræ was for the passage of the alimentary canal, which