termed weig.ht. In our illustration of the attractive forces of matter above given, we supposed a case in which one ball was very much larger than the other: now this precisely corresponds with the case of the globe of the Earth, and of all common bodies near its surface. The Earth is more than $1,000,000,000,000,000$ times the mass of any body which is observed to fall on its surface; and therefore, if even the largest body which can come under observation were to fall through a height of 500 feet, the corresponding motion of the Earth would be through a space less than the $1,000,000,000,000,000$ th part of 500 feet; which is less than the $100,000,000,000$ th part of an inch, and therefore quite inappreciable.* Now the attractive force exerted between the Earth and detached bodies, is denominated weight. Hence the weight of a body, at the earth's surface, is proportionate to its mass, or to the quantity of matter it may contain, whatever the form or qualities of that matter may be-a most important fact for the chemist; who, by employing the chemical properties of bodies as indications of identity or of change, is by these means enabled to apply to them the more certain measure of weight; and thus in some degree, to bring them under the dominion of the laws of quantity.

[^0]
[^0]: * Lardner's Cabinct Cyclopædia, Art. Mechanics, p. 79.

